Performance-advantaged ether diesel bioblendstock production by a priori design

Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ether...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-12, Vol.116 (52), p.26421-26430
Hauptverfasser: Huq, Nabila A., Huo, Xiangchen, Hafenstine, Glenn R., Tifft, Stephen M., Stunkel, Jim, Christensen, Earl D., Fioroni, Gina M., Fouts, Lisa, McCormick, Robert L., Cherry, Patrick A., McEnally, Charles S., Pfefferle, Lisa D., Wiatrowski, Matthew R., Benavides, P. Thathiana, Biddy, Mary J., Connatser, Raynella M., Kass, Michael D., Alleman, Teresa L., St. John, Peter C., Kim, Seonah, Vardon, Derek R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26430
container_issue 52
container_start_page 26421
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Huq, Nabila A.
Huo, Xiangchen
Hafenstine, Glenn R.
Tifft, Stephen M.
Stunkel, Jim
Christensen, Earl D.
Fioroni, Gina M.
Fouts, Lisa
McCormick, Robert L.
Cherry, Patrick A.
McEnally, Charles S.
Pfefferle, Lisa D.
Wiatrowski, Matthew R.
Benavides, P. Thathiana
Biddy, Mary J.
Connatser, Raynella M.
Kass, Michael D.
Alleman, Teresa L.
St. John, Peter C.
Kim, Seonah
Vardon, Derek R.
description Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C₂ and C₄ carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (>56% cetane number increase) and reduced sooting (>86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.
doi_str_mv 10.1073/pnas.1911107116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26897112</jstor_id><sourcerecordid>26897112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-c14f487c70ac74688d6f2ea86e6d1be28aebe2682f46a4128f1dabd3e767e90c3</originalsourceid><addsrcrecordid>eNpVkc1vEzEQxS0EoqFw5gRawXlbj73rjwtSVfFRqVI5tGfLa88mDokdbKdS_3tcpQR6sTWan988zyPkPdAzoJKf76ItZ6ABWgUgXpAFUA29GDR9SRaUMtmrgQ0n5E0pa0qpHhV9TU44qIErrRfk5ifmOeWtjQ576-9trHaJvsO6wtz5gAU33RTStMHoS03uV7fLye9dDSl200NnWx1SDp3HEpbxLXk1203Bd0_3Kbn79vX28kd_ffP96vLiuncjF7V3MMyDkk5S6-QglPJiZmiVQOFhQqYstlMoNg_CDsDUDN5OnqMUEjV1_JR8Oeju9tMWvcNYs92Y5mVr84NJNpjnnRhWZpnujdBc8FE3gU8HgVRqMMWFim7lUozoqoFR6lFCgz4_Tcnp9x5LNeu0z7F9zDDOgQFjgjfq_EC5nErJOB9tADWPMZnHmMy_mNqLj_-7P_J_c2nAhwOwbjvPx37biG4CjP8BTQ2Zwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331212263</pqid></control><display><type>article</type><title>Performance-advantaged ether diesel bioblendstock production by a priori design</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Huq, Nabila A. ; Huo, Xiangchen ; Hafenstine, Glenn R. ; Tifft, Stephen M. ; Stunkel, Jim ; Christensen, Earl D. ; Fioroni, Gina M. ; Fouts, Lisa ; McCormick, Robert L. ; Cherry, Patrick A. ; McEnally, Charles S. ; Pfefferle, Lisa D. ; Wiatrowski, Matthew R. ; Benavides, P. Thathiana ; Biddy, Mary J. ; Connatser, Raynella M. ; Kass, Michael D. ; Alleman, Teresa L. ; St. John, Peter C. ; Kim, Seonah ; Vardon, Derek R.</creator><creatorcontrib>Huq, Nabila A. ; Huo, Xiangchen ; Hafenstine, Glenn R. ; Tifft, Stephen M. ; Stunkel, Jim ; Christensen, Earl D. ; Fioroni, Gina M. ; Fouts, Lisa ; McCormick, Robert L. ; Cherry, Patrick A. ; McEnally, Charles S. ; Pfefferle, Lisa D. ; Wiatrowski, Matthew R. ; Benavides, P. Thathiana ; Biddy, Mary J. ; Connatser, Raynella M. ; Kass, Michael D. ; Alleman, Teresa L. ; St. John, Peter C. ; Kim, Seonah ; Vardon, Derek R. ; National Renewable Energy Lab. (NREL), Golden, CO (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C₂ and C₄ carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (&gt;56% cetane number increase) and reduced sooting (&gt;86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1911107116</identifier><identifier>PMID: 31843899</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>09 BIOMASS FUELS ; Acidic oxides ; Antioxidants ; biofuel ; biooxygenate ; Carbon sources ; Carboxylic acids ; Catalysts ; Cetane number ; Conversion ; Cost analysis ; Diesel ; Diesel fuels ; Elastomers ; Emissions control ; Ethers ; Greenhouse effect ; Greenhouse gases ; Ignition ; Life cycle analysis ; Lignocellulose ; OPPL ; Physical Sciences ; PNAS Plus ; R&amp;D ; Research &amp; development ; Shelf life ; solvent-free ; Storage stability ; technoeconomic analysis ; Thermal stability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.26421-26430</ispartof><rights>Copyright National Academy of Sciences Dec 26, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-c14f487c70ac74688d6f2ea86e6d1be28aebe2682f46a4128f1dabd3e767e90c3</citedby><cites>FETCH-LOGICAL-c536t-c14f487c70ac74688d6f2ea86e6d1be28aebe2682f46a4128f1dabd3e767e90c3</cites><orcidid>0000-0001-5088-9758 ; 0000-0002-0199-4524 ; 0000-0002-7932-4563 ; 0000000279324563 ; 0000000150889758 ; 0000000201994524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26897112$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26897112$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31843899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1579571$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huq, Nabila A.</creatorcontrib><creatorcontrib>Huo, Xiangchen</creatorcontrib><creatorcontrib>Hafenstine, Glenn R.</creatorcontrib><creatorcontrib>Tifft, Stephen M.</creatorcontrib><creatorcontrib>Stunkel, Jim</creatorcontrib><creatorcontrib>Christensen, Earl D.</creatorcontrib><creatorcontrib>Fioroni, Gina M.</creatorcontrib><creatorcontrib>Fouts, Lisa</creatorcontrib><creatorcontrib>McCormick, Robert L.</creatorcontrib><creatorcontrib>Cherry, Patrick A.</creatorcontrib><creatorcontrib>McEnally, Charles S.</creatorcontrib><creatorcontrib>Pfefferle, Lisa D.</creatorcontrib><creatorcontrib>Wiatrowski, Matthew R.</creatorcontrib><creatorcontrib>Benavides, P. Thathiana</creatorcontrib><creatorcontrib>Biddy, Mary J.</creatorcontrib><creatorcontrib>Connatser, Raynella M.</creatorcontrib><creatorcontrib>Kass, Michael D.</creatorcontrib><creatorcontrib>Alleman, Teresa L.</creatorcontrib><creatorcontrib>St. John, Peter C.</creatorcontrib><creatorcontrib>Kim, Seonah</creatorcontrib><creatorcontrib>Vardon, Derek R.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Performance-advantaged ether diesel bioblendstock production by a priori design</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C₂ and C₄ carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (&gt;56% cetane number increase) and reduced sooting (&gt;86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.</description><subject>09 BIOMASS FUELS</subject><subject>Acidic oxides</subject><subject>Antioxidants</subject><subject>biofuel</subject><subject>biooxygenate</subject><subject>Carbon sources</subject><subject>Carboxylic acids</subject><subject>Catalysts</subject><subject>Cetane number</subject><subject>Conversion</subject><subject>Cost analysis</subject><subject>Diesel</subject><subject>Diesel fuels</subject><subject>Elastomers</subject><subject>Emissions control</subject><subject>Ethers</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Ignition</subject><subject>Life cycle analysis</subject><subject>Lignocellulose</subject><subject>OPPL</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Shelf life</subject><subject>solvent-free</subject><subject>Storage stability</subject><subject>technoeconomic analysis</subject><subject>Thermal stability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkc1vEzEQxS0EoqFw5gRawXlbj73rjwtSVfFRqVI5tGfLa88mDokdbKdS_3tcpQR6sTWan988zyPkPdAzoJKf76ItZ6ABWgUgXpAFUA29GDR9SRaUMtmrgQ0n5E0pa0qpHhV9TU44qIErrRfk5ifmOeWtjQ576-9trHaJvsO6wtz5gAU33RTStMHoS03uV7fLye9dDSl200NnWx1SDp3HEpbxLXk1203Bd0_3Kbn79vX28kd_ffP96vLiuncjF7V3MMyDkk5S6-QglPJiZmiVQOFhQqYstlMoNg_CDsDUDN5OnqMUEjV1_JR8Oeju9tMWvcNYs92Y5mVr84NJNpjnnRhWZpnujdBc8FE3gU8HgVRqMMWFim7lUozoqoFR6lFCgz4_Tcnp9x5LNeu0z7F9zDDOgQFjgjfq_EC5nErJOB9tADWPMZnHmMy_mNqLj_-7P_J_c2nAhwOwbjvPx37biG4CjP8BTQ2Zwg</recordid><startdate>20191226</startdate><enddate>20191226</enddate><creator>Huq, Nabila A.</creator><creator>Huo, Xiangchen</creator><creator>Hafenstine, Glenn R.</creator><creator>Tifft, Stephen M.</creator><creator>Stunkel, Jim</creator><creator>Christensen, Earl D.</creator><creator>Fioroni, Gina M.</creator><creator>Fouts, Lisa</creator><creator>McCormick, Robert L.</creator><creator>Cherry, Patrick A.</creator><creator>McEnally, Charles S.</creator><creator>Pfefferle, Lisa D.</creator><creator>Wiatrowski, Matthew R.</creator><creator>Benavides, P. Thathiana</creator><creator>Biddy, Mary J.</creator><creator>Connatser, Raynella M.</creator><creator>Kass, Michael D.</creator><creator>Alleman, Teresa L.</creator><creator>St. John, Peter C.</creator><creator>Kim, Seonah</creator><creator>Vardon, Derek R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5088-9758</orcidid><orcidid>https://orcid.org/0000-0002-0199-4524</orcidid><orcidid>https://orcid.org/0000-0002-7932-4563</orcidid><orcidid>https://orcid.org/0000000279324563</orcidid><orcidid>https://orcid.org/0000000150889758</orcidid><orcidid>https://orcid.org/0000000201994524</orcidid></search><sort><creationdate>20191226</creationdate><title>Performance-advantaged ether diesel bioblendstock production by a priori design</title><author>Huq, Nabila A. ; Huo, Xiangchen ; Hafenstine, Glenn R. ; Tifft, Stephen M. ; Stunkel, Jim ; Christensen, Earl D. ; Fioroni, Gina M. ; Fouts, Lisa ; McCormick, Robert L. ; Cherry, Patrick A. ; McEnally, Charles S. ; Pfefferle, Lisa D. ; Wiatrowski, Matthew R. ; Benavides, P. Thathiana ; Biddy, Mary J. ; Connatser, Raynella M. ; Kass, Michael D. ; Alleman, Teresa L. ; St. John, Peter C. ; Kim, Seonah ; Vardon, Derek R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-c14f487c70ac74688d6f2ea86e6d1be28aebe2682f46a4128f1dabd3e767e90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>09 BIOMASS FUELS</topic><topic>Acidic oxides</topic><topic>Antioxidants</topic><topic>biofuel</topic><topic>biooxygenate</topic><topic>Carbon sources</topic><topic>Carboxylic acids</topic><topic>Catalysts</topic><topic>Cetane number</topic><topic>Conversion</topic><topic>Cost analysis</topic><topic>Diesel</topic><topic>Diesel fuels</topic><topic>Elastomers</topic><topic>Emissions control</topic><topic>Ethers</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Ignition</topic><topic>Life cycle analysis</topic><topic>Lignocellulose</topic><topic>OPPL</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Shelf life</topic><topic>solvent-free</topic><topic>Storage stability</topic><topic>technoeconomic analysis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huq, Nabila A.</creatorcontrib><creatorcontrib>Huo, Xiangchen</creatorcontrib><creatorcontrib>Hafenstine, Glenn R.</creatorcontrib><creatorcontrib>Tifft, Stephen M.</creatorcontrib><creatorcontrib>Stunkel, Jim</creatorcontrib><creatorcontrib>Christensen, Earl D.</creatorcontrib><creatorcontrib>Fioroni, Gina M.</creatorcontrib><creatorcontrib>Fouts, Lisa</creatorcontrib><creatorcontrib>McCormick, Robert L.</creatorcontrib><creatorcontrib>Cherry, Patrick A.</creatorcontrib><creatorcontrib>McEnally, Charles S.</creatorcontrib><creatorcontrib>Pfefferle, Lisa D.</creatorcontrib><creatorcontrib>Wiatrowski, Matthew R.</creatorcontrib><creatorcontrib>Benavides, P. Thathiana</creatorcontrib><creatorcontrib>Biddy, Mary J.</creatorcontrib><creatorcontrib>Connatser, Raynella M.</creatorcontrib><creatorcontrib>Kass, Michael D.</creatorcontrib><creatorcontrib>Alleman, Teresa L.</creatorcontrib><creatorcontrib>St. John, Peter C.</creatorcontrib><creatorcontrib>Kim, Seonah</creatorcontrib><creatorcontrib>Vardon, Derek R.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huq, Nabila A.</au><au>Huo, Xiangchen</au><au>Hafenstine, Glenn R.</au><au>Tifft, Stephen M.</au><au>Stunkel, Jim</au><au>Christensen, Earl D.</au><au>Fioroni, Gina M.</au><au>Fouts, Lisa</au><au>McCormick, Robert L.</au><au>Cherry, Patrick A.</au><au>McEnally, Charles S.</au><au>Pfefferle, Lisa D.</au><au>Wiatrowski, Matthew R.</au><au>Benavides, P. Thathiana</au><au>Biddy, Mary J.</au><au>Connatser, Raynella M.</au><au>Kass, Michael D.</au><au>Alleman, Teresa L.</au><au>St. John, Peter C.</au><au>Kim, Seonah</au><au>Vardon, Derek R.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance-advantaged ether diesel bioblendstock production by a priori design</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-12-26</date><risdate>2019</risdate><volume>116</volume><issue>52</issue><spage>26421</spage><epage>26430</epage><pages>26421-26430</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C₂ and C₄ carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (&gt;56% cetane number increase) and reduced sooting (&gt;86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31843899</pmid><doi>10.1073/pnas.1911107116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5088-9758</orcidid><orcidid>https://orcid.org/0000-0002-0199-4524</orcidid><orcidid>https://orcid.org/0000-0002-7932-4563</orcidid><orcidid>https://orcid.org/0000000279324563</orcidid><orcidid>https://orcid.org/0000000150889758</orcidid><orcidid>https://orcid.org/0000000201994524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.26421-26430
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936359
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 09 BIOMASS FUELS
Acidic oxides
Antioxidants
biofuel
biooxygenate
Carbon sources
Carboxylic acids
Catalysts
Cetane number
Conversion
Cost analysis
Diesel
Diesel fuels
Elastomers
Emissions control
Ethers
Greenhouse effect
Greenhouse gases
Ignition
Life cycle analysis
Lignocellulose
OPPL
Physical Sciences
PNAS Plus
R&D
Research & development
Shelf life
solvent-free
Storage stability
technoeconomic analysis
Thermal stability
title Performance-advantaged ether diesel bioblendstock production by a priori design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance-advantaged%20ether%20diesel%20bioblendstock%20production%20by%20a%20priori%20design&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Huq,%20Nabila%20A.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2019-12-26&rft.volume=116&rft.issue=52&rft.spage=26421&rft.epage=26430&rft.pages=26421-26430&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1911107116&rft_dat=%3Cjstor_pubme%3E26897112%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331212263&rft_id=info:pmid/31843899&rft_jstor_id=26897112&rfr_iscdi=true