Performance-advantaged ether diesel bioblendstock production by a priori design
Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ether...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-12, Vol.116 (52), p.26421-26430 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26430 |
---|---|
container_issue | 52 |
container_start_page | 26421 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Huq, Nabila A. Huo, Xiangchen Hafenstine, Glenn R. Tifft, Stephen M. Stunkel, Jim Christensen, Earl D. Fioroni, Gina M. Fouts, Lisa McCormick, Robert L. Cherry, Patrick A. McEnally, Charles S. Pfefferle, Lisa D. Wiatrowski, Matthew R. Benavides, P. Thathiana Biddy, Mary J. Connatser, Raynella M. Kass, Michael D. Alleman, Teresa L. St. John, Peter C. Kim, Seonah Vardon, Derek R. |
description | Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C₂ and C₄ carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (>56% cetane number increase) and reduced sooting (>86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts. |
doi_str_mv | 10.1073/pnas.1911107116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26897112</jstor_id><sourcerecordid>26897112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-c14f487c70ac74688d6f2ea86e6d1be28aebe2682f46a4128f1dabd3e767e90c3</originalsourceid><addsrcrecordid>eNpVkc1vEzEQxS0EoqFw5gRawXlbj73rjwtSVfFRqVI5tGfLa88mDokdbKdS_3tcpQR6sTWan988zyPkPdAzoJKf76ItZ6ABWgUgXpAFUA29GDR9SRaUMtmrgQ0n5E0pa0qpHhV9TU44qIErrRfk5ifmOeWtjQ576-9trHaJvsO6wtz5gAU33RTStMHoS03uV7fLye9dDSl200NnWx1SDp3HEpbxLXk1203Bd0_3Kbn79vX28kd_ffP96vLiuncjF7V3MMyDkk5S6-QglPJiZmiVQOFhQqYstlMoNg_CDsDUDN5OnqMUEjV1_JR8Oeju9tMWvcNYs92Y5mVr84NJNpjnnRhWZpnujdBc8FE3gU8HgVRqMMWFim7lUozoqoFR6lFCgz4_Tcnp9x5LNeu0z7F9zDDOgQFjgjfq_EC5nErJOB9tADWPMZnHmMy_mNqLj_-7P_J_c2nAhwOwbjvPx37biG4CjP8BTQ2Zwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331212263</pqid></control><display><type>article</type><title>Performance-advantaged ether diesel bioblendstock production by a priori design</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Huq, Nabila A. ; Huo, Xiangchen ; Hafenstine, Glenn R. ; Tifft, Stephen M. ; Stunkel, Jim ; Christensen, Earl D. ; Fioroni, Gina M. ; Fouts, Lisa ; McCormick, Robert L. ; Cherry, Patrick A. ; McEnally, Charles S. ; Pfefferle, Lisa D. ; Wiatrowski, Matthew R. ; Benavides, P. Thathiana ; Biddy, Mary J. ; Connatser, Raynella M. ; Kass, Michael D. ; Alleman, Teresa L. ; St. John, Peter C. ; Kim, Seonah ; Vardon, Derek R.</creator><creatorcontrib>Huq, Nabila A. ; Huo, Xiangchen ; Hafenstine, Glenn R. ; Tifft, Stephen M. ; Stunkel, Jim ; Christensen, Earl D. ; Fioroni, Gina M. ; Fouts, Lisa ; McCormick, Robert L. ; Cherry, Patrick A. ; McEnally, Charles S. ; Pfefferle, Lisa D. ; Wiatrowski, Matthew R. ; Benavides, P. Thathiana ; Biddy, Mary J. ; Connatser, Raynella M. ; Kass, Michael D. ; Alleman, Teresa L. ; St. John, Peter C. ; Kim, Seonah ; Vardon, Derek R. ; National Renewable Energy Lab. (NREL), Golden, CO (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C₂ and C₄ carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (>56% cetane number increase) and reduced sooting (>86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1911107116</identifier><identifier>PMID: 31843899</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>09 BIOMASS FUELS ; Acidic oxides ; Antioxidants ; biofuel ; biooxygenate ; Carbon sources ; Carboxylic acids ; Catalysts ; Cetane number ; Conversion ; Cost analysis ; Diesel ; Diesel fuels ; Elastomers ; Emissions control ; Ethers ; Greenhouse effect ; Greenhouse gases ; Ignition ; Life cycle analysis ; Lignocellulose ; OPPL ; Physical Sciences ; PNAS Plus ; R&D ; Research & development ; Shelf life ; solvent-free ; Storage stability ; technoeconomic analysis ; Thermal stability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.26421-26430</ispartof><rights>Copyright National Academy of Sciences Dec 26, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-c14f487c70ac74688d6f2ea86e6d1be28aebe2682f46a4128f1dabd3e767e90c3</citedby><cites>FETCH-LOGICAL-c536t-c14f487c70ac74688d6f2ea86e6d1be28aebe2682f46a4128f1dabd3e767e90c3</cites><orcidid>0000-0001-5088-9758 ; 0000-0002-0199-4524 ; 0000-0002-7932-4563 ; 0000000279324563 ; 0000000150889758 ; 0000000201994524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26897112$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26897112$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31843899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1579571$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huq, Nabila A.</creatorcontrib><creatorcontrib>Huo, Xiangchen</creatorcontrib><creatorcontrib>Hafenstine, Glenn R.</creatorcontrib><creatorcontrib>Tifft, Stephen M.</creatorcontrib><creatorcontrib>Stunkel, Jim</creatorcontrib><creatorcontrib>Christensen, Earl D.</creatorcontrib><creatorcontrib>Fioroni, Gina M.</creatorcontrib><creatorcontrib>Fouts, Lisa</creatorcontrib><creatorcontrib>McCormick, Robert L.</creatorcontrib><creatorcontrib>Cherry, Patrick A.</creatorcontrib><creatorcontrib>McEnally, Charles S.</creatorcontrib><creatorcontrib>Pfefferle, Lisa D.</creatorcontrib><creatorcontrib>Wiatrowski, Matthew R.</creatorcontrib><creatorcontrib>Benavides, P. Thathiana</creatorcontrib><creatorcontrib>Biddy, Mary J.</creatorcontrib><creatorcontrib>Connatser, Raynella M.</creatorcontrib><creatorcontrib>Kass, Michael D.</creatorcontrib><creatorcontrib>Alleman, Teresa L.</creatorcontrib><creatorcontrib>St. John, Peter C.</creatorcontrib><creatorcontrib>Kim, Seonah</creatorcontrib><creatorcontrib>Vardon, Derek R.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Performance-advantaged ether diesel bioblendstock production by a priori design</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C₂ and C₄ carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (>56% cetane number increase) and reduced sooting (>86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.</description><subject>09 BIOMASS FUELS</subject><subject>Acidic oxides</subject><subject>Antioxidants</subject><subject>biofuel</subject><subject>biooxygenate</subject><subject>Carbon sources</subject><subject>Carboxylic acids</subject><subject>Catalysts</subject><subject>Cetane number</subject><subject>Conversion</subject><subject>Cost analysis</subject><subject>Diesel</subject><subject>Diesel fuels</subject><subject>Elastomers</subject><subject>Emissions control</subject><subject>Ethers</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Ignition</subject><subject>Life cycle analysis</subject><subject>Lignocellulose</subject><subject>OPPL</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>R&D</subject><subject>Research & development</subject><subject>Shelf life</subject><subject>solvent-free</subject><subject>Storage stability</subject><subject>technoeconomic analysis</subject><subject>Thermal stability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkc1vEzEQxS0EoqFw5gRawXlbj73rjwtSVfFRqVI5tGfLa88mDokdbKdS_3tcpQR6sTWan988zyPkPdAzoJKf76ItZ6ABWgUgXpAFUA29GDR9SRaUMtmrgQ0n5E0pa0qpHhV9TU44qIErrRfk5ifmOeWtjQ576-9trHaJvsO6wtz5gAU33RTStMHoS03uV7fLye9dDSl200NnWx1SDp3HEpbxLXk1203Bd0_3Kbn79vX28kd_ffP96vLiuncjF7V3MMyDkk5S6-QglPJiZmiVQOFhQqYstlMoNg_CDsDUDN5OnqMUEjV1_JR8Oeju9tMWvcNYs92Y5mVr84NJNpjnnRhWZpnujdBc8FE3gU8HgVRqMMWFim7lUozoqoFR6lFCgz4_Tcnp9x5LNeu0z7F9zDDOgQFjgjfq_EC5nErJOB9tADWPMZnHmMy_mNqLj_-7P_J_c2nAhwOwbjvPx37biG4CjP8BTQ2Zwg</recordid><startdate>20191226</startdate><enddate>20191226</enddate><creator>Huq, Nabila A.</creator><creator>Huo, Xiangchen</creator><creator>Hafenstine, Glenn R.</creator><creator>Tifft, Stephen M.</creator><creator>Stunkel, Jim</creator><creator>Christensen, Earl D.</creator><creator>Fioroni, Gina M.</creator><creator>Fouts, Lisa</creator><creator>McCormick, Robert L.</creator><creator>Cherry, Patrick A.</creator><creator>McEnally, Charles S.</creator><creator>Pfefferle, Lisa D.</creator><creator>Wiatrowski, Matthew R.</creator><creator>Benavides, P. Thathiana</creator><creator>Biddy, Mary J.</creator><creator>Connatser, Raynella M.</creator><creator>Kass, Michael D.</creator><creator>Alleman, Teresa L.</creator><creator>St. John, Peter C.</creator><creator>Kim, Seonah</creator><creator>Vardon, Derek R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5088-9758</orcidid><orcidid>https://orcid.org/0000-0002-0199-4524</orcidid><orcidid>https://orcid.org/0000-0002-7932-4563</orcidid><orcidid>https://orcid.org/0000000279324563</orcidid><orcidid>https://orcid.org/0000000150889758</orcidid><orcidid>https://orcid.org/0000000201994524</orcidid></search><sort><creationdate>20191226</creationdate><title>Performance-advantaged ether diesel bioblendstock production by a priori design</title><author>Huq, Nabila A. ; Huo, Xiangchen ; Hafenstine, Glenn R. ; Tifft, Stephen M. ; Stunkel, Jim ; Christensen, Earl D. ; Fioroni, Gina M. ; Fouts, Lisa ; McCormick, Robert L. ; Cherry, Patrick A. ; McEnally, Charles S. ; Pfefferle, Lisa D. ; Wiatrowski, Matthew R. ; Benavides, P. Thathiana ; Biddy, Mary J. ; Connatser, Raynella M. ; Kass, Michael D. ; Alleman, Teresa L. ; St. John, Peter C. ; Kim, Seonah ; Vardon, Derek R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-c14f487c70ac74688d6f2ea86e6d1be28aebe2682f46a4128f1dabd3e767e90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>09 BIOMASS FUELS</topic><topic>Acidic oxides</topic><topic>Antioxidants</topic><topic>biofuel</topic><topic>biooxygenate</topic><topic>Carbon sources</topic><topic>Carboxylic acids</topic><topic>Catalysts</topic><topic>Cetane number</topic><topic>Conversion</topic><topic>Cost analysis</topic><topic>Diesel</topic><topic>Diesel fuels</topic><topic>Elastomers</topic><topic>Emissions control</topic><topic>Ethers</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Ignition</topic><topic>Life cycle analysis</topic><topic>Lignocellulose</topic><topic>OPPL</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>R&D</topic><topic>Research & development</topic><topic>Shelf life</topic><topic>solvent-free</topic><topic>Storage stability</topic><topic>technoeconomic analysis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huq, Nabila A.</creatorcontrib><creatorcontrib>Huo, Xiangchen</creatorcontrib><creatorcontrib>Hafenstine, Glenn R.</creatorcontrib><creatorcontrib>Tifft, Stephen M.</creatorcontrib><creatorcontrib>Stunkel, Jim</creatorcontrib><creatorcontrib>Christensen, Earl D.</creatorcontrib><creatorcontrib>Fioroni, Gina M.</creatorcontrib><creatorcontrib>Fouts, Lisa</creatorcontrib><creatorcontrib>McCormick, Robert L.</creatorcontrib><creatorcontrib>Cherry, Patrick A.</creatorcontrib><creatorcontrib>McEnally, Charles S.</creatorcontrib><creatorcontrib>Pfefferle, Lisa D.</creatorcontrib><creatorcontrib>Wiatrowski, Matthew R.</creatorcontrib><creatorcontrib>Benavides, P. Thathiana</creatorcontrib><creatorcontrib>Biddy, Mary J.</creatorcontrib><creatorcontrib>Connatser, Raynella M.</creatorcontrib><creatorcontrib>Kass, Michael D.</creatorcontrib><creatorcontrib>Alleman, Teresa L.</creatorcontrib><creatorcontrib>St. John, Peter C.</creatorcontrib><creatorcontrib>Kim, Seonah</creatorcontrib><creatorcontrib>Vardon, Derek R.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huq, Nabila A.</au><au>Huo, Xiangchen</au><au>Hafenstine, Glenn R.</au><au>Tifft, Stephen M.</au><au>Stunkel, Jim</au><au>Christensen, Earl D.</au><au>Fioroni, Gina M.</au><au>Fouts, Lisa</au><au>McCormick, Robert L.</au><au>Cherry, Patrick A.</au><au>McEnally, Charles S.</au><au>Pfefferle, Lisa D.</au><au>Wiatrowski, Matthew R.</au><au>Benavides, P. Thathiana</au><au>Biddy, Mary J.</au><au>Connatser, Raynella M.</au><au>Kass, Michael D.</au><au>Alleman, Teresa L.</au><au>St. John, Peter C.</au><au>Kim, Seonah</au><au>Vardon, Derek R.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance-advantaged ether diesel bioblendstock production by a priori design</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-12-26</date><risdate>2019</risdate><volume>116</volume><issue>52</issue><spage>26421</spage><epage>26430</epage><pages>26421-26430</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C₂ and C₄ carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (>56% cetane number increase) and reduced sooting (>86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31843899</pmid><doi>10.1073/pnas.1911107116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5088-9758</orcidid><orcidid>https://orcid.org/0000-0002-0199-4524</orcidid><orcidid>https://orcid.org/0000-0002-7932-4563</orcidid><orcidid>https://orcid.org/0000000279324563</orcidid><orcidid>https://orcid.org/0000000150889758</orcidid><orcidid>https://orcid.org/0000000201994524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.26421-26430 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936359 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 09 BIOMASS FUELS Acidic oxides Antioxidants biofuel biooxygenate Carbon sources Carboxylic acids Catalysts Cetane number Conversion Cost analysis Diesel Diesel fuels Elastomers Emissions control Ethers Greenhouse effect Greenhouse gases Ignition Life cycle analysis Lignocellulose OPPL Physical Sciences PNAS Plus R&D Research & development Shelf life solvent-free Storage stability technoeconomic analysis Thermal stability |
title | Performance-advantaged ether diesel bioblendstock production by a priori design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance-advantaged%20ether%20diesel%20bioblendstock%20production%20by%20a%20priori%20design&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Huq,%20Nabila%20A.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2019-12-26&rft.volume=116&rft.issue=52&rft.spage=26421&rft.epage=26430&rft.pages=26421-26430&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1911107116&rft_dat=%3Cjstor_pubme%3E26897112%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331212263&rft_id=info:pmid/31843899&rft_jstor_id=26897112&rfr_iscdi=true |