A simple analytic model for predicting the wicking velocity in micropillar arrays

Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-12, Vol.9 (1), p.20074-9, Article 20074
Hauptverfasser: Krishnan, Siva Rama, Bal, John, Putnam, Shawn A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 20074
container_title Scientific reports
container_volume 9
creator Krishnan, Siva Rama
Bal, John
Putnam, Shawn A.
description Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers ( 10 − 7 ≲ Re ≲ 10 − 3 ) . Fluid drag is conceptualized via a critical Reynolds number: Re = v 0 x 0 ν , where v 0 corresponds to the maximum wetting speed on a flat, dry surface and x 0 is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction with v 0 and x 0 measurements using Water ( v 0 ≈ 2 m / s , 25 µ m ≲ x 0 ≲ 28 µ m ) , viscous FC-70 ( v 0 ≈ 0.3 m / s , 18.6 µ m ≲ x 0 ≲ 38.6 µ m ) and lower viscosity Ethanol ( v 0 ≈ 1.2 m / s , 11.8 µ m ≲ x 0 ≲ 33.3 µ m ) .
doi_str_mv 10.1038/s41598-019-56361-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6934572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331260982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-dfcb042887c9f2c94c66b93d1f5360cb33cd52ed35550fb0d1c3b95abf78a9233</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoOui8gAsJuHFTzaVJk40wDN5AEEHXIU3TMdo2Neko8_ZmHB1HF2aTA-c7_7n8ABxidIoRFWcxx0yKDGGZMU45zootMCIoZxmhhGxvxHtgHOMzSo8RmWO5C_YoFoJwgUfgfgKja_vGQt3pZjE4A1tf2QbWPsA-2MqZwXUzODxZ-O7MyzJ-s403blhA18HWmeB71zQ6QB2CXsQDsFPrJtrx178PHi8vHqbX2e3d1c10cpuZvMiHrKpNiXIiRGFkTYzMDeelpBWuGeXIlJSaihFbUcYYqktUYUNLyXRZF0JLQuk-OF_p9vOytZWx3RB0o_rgWh0Wymunfmc696Rm_k1xSXNWkCRw8iUQ_OvcxkG1LhqbVumsn0eVemDCkRRL9PgP-uznIR3sk0KSS0xYosiKSieJMdh6PQxGammaWpmmkmnq0zRVpKKjzTXWJd8WJYCugJhS3cyGn97_yH4AV-mjWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330969125</pqid></control><display><type>article</type><title>A simple analytic model for predicting the wicking velocity in micropillar arrays</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Krishnan, Siva Rama ; Bal, John ; Putnam, Shawn A.</creator><creatorcontrib>Krishnan, Siva Rama ; Bal, John ; Putnam, Shawn A.</creatorcontrib><description>Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers ( 10 − 7 ≲ Re ≲ 10 − 3 ) . Fluid drag is conceptualized via a critical Reynolds number: Re = v 0 x 0 ν , where v 0 corresponds to the maximum wetting speed on a flat, dry surface and x 0 is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction with v 0 and x 0 measurements using Water ( v 0 ≈ 2 m / s , 25 µ m ≲ x 0 ≲ 28 µ m ) , viscous FC-70 ( v 0 ≈ 0.3 m / s , 18.6 µ m ≲ x 0 ≲ 38.6 µ m ) and lower viscosity Ethanol ( v 0 ≈ 1.2 m / s , 11.8 µ m ≲ x 0 ≲ 33.3 µ m ) .</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-56361-7</identifier><identifier>PMID: 31882681</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 142/126 ; 639/166/988 ; 639/766/189 ; Capillarity ; Ethanol ; Humanities and Social Sciences ; multidisciplinary ; Reynolds number ; Science ; Science (multidisciplinary) ; Thin films ; Viscosity</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.20074-9, Article 20074</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-dfcb042887c9f2c94c66b93d1f5360cb33cd52ed35550fb0d1c3b95abf78a9233</citedby><cites>FETCH-LOGICAL-c474t-dfcb042887c9f2c94c66b93d1f5360cb33cd52ed35550fb0d1c3b95abf78a9233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934572/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934572/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31882681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnan, Siva Rama</creatorcontrib><creatorcontrib>Bal, John</creatorcontrib><creatorcontrib>Putnam, Shawn A.</creatorcontrib><title>A simple analytic model for predicting the wicking velocity in micropillar arrays</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers ( 10 − 7 ≲ Re ≲ 10 − 3 ) . Fluid drag is conceptualized via a critical Reynolds number: Re = v 0 x 0 ν , where v 0 corresponds to the maximum wetting speed on a flat, dry surface and x 0 is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction with v 0 and x 0 measurements using Water ( v 0 ≈ 2 m / s , 25 µ m ≲ x 0 ≲ 28 µ m ) , viscous FC-70 ( v 0 ≈ 0.3 m / s , 18.6 µ m ≲ x 0 ≲ 38.6 µ m ) and lower viscosity Ethanol ( v 0 ≈ 1.2 m / s , 11.8 µ m ≲ x 0 ≲ 33.3 µ m ) .</description><subject>132/124</subject><subject>142/126</subject><subject>639/166/988</subject><subject>639/766/189</subject><subject>Capillarity</subject><subject>Ethanol</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Reynolds number</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thin films</subject><subject>Viscosity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctKxDAUhoMoOui8gAsJuHFTzaVJk40wDN5AEEHXIU3TMdo2Neko8_ZmHB1HF2aTA-c7_7n8ABxidIoRFWcxx0yKDGGZMU45zootMCIoZxmhhGxvxHtgHOMzSo8RmWO5C_YoFoJwgUfgfgKja_vGQt3pZjE4A1tf2QbWPsA-2MqZwXUzODxZ-O7MyzJ-s403blhA18HWmeB71zQ6QB2CXsQDsFPrJtrx178PHi8vHqbX2e3d1c10cpuZvMiHrKpNiXIiRGFkTYzMDeelpBWuGeXIlJSaihFbUcYYqktUYUNLyXRZF0JLQuk-OF_p9vOytZWx3RB0o_rgWh0Wymunfmc696Rm_k1xSXNWkCRw8iUQ_OvcxkG1LhqbVumsn0eVemDCkRRL9PgP-uznIR3sk0KSS0xYosiKSieJMdh6PQxGammaWpmmkmnq0zRVpKKjzTXWJd8WJYCugJhS3cyGn97_yH4AV-mjWA</recordid><startdate>20191227</startdate><enddate>20191227</enddate><creator>Krishnan, Siva Rama</creator><creator>Bal, John</creator><creator>Putnam, Shawn A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191227</creationdate><title>A simple analytic model for predicting the wicking velocity in micropillar arrays</title><author>Krishnan, Siva Rama ; Bal, John ; Putnam, Shawn A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-dfcb042887c9f2c94c66b93d1f5360cb33cd52ed35550fb0d1c3b95abf78a9233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>132/124</topic><topic>142/126</topic><topic>639/166/988</topic><topic>639/766/189</topic><topic>Capillarity</topic><topic>Ethanol</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Reynolds number</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thin films</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Siva Rama</creatorcontrib><creatorcontrib>Bal, John</creatorcontrib><creatorcontrib>Putnam, Shawn A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnan, Siva Rama</au><au>Bal, John</au><au>Putnam, Shawn A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple analytic model for predicting the wicking velocity in micropillar arrays</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-27</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>20074</spage><epage>9</epage><pages>20074-9</pages><artnum>20074</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers ( 10 − 7 ≲ Re ≲ 10 − 3 ) . Fluid drag is conceptualized via a critical Reynolds number: Re = v 0 x 0 ν , where v 0 corresponds to the maximum wetting speed on a flat, dry surface and x 0 is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction with v 0 and x 0 measurements using Water ( v 0 ≈ 2 m / s , 25 µ m ≲ x 0 ≲ 28 µ m ) , viscous FC-70 ( v 0 ≈ 0.3 m / s , 18.6 µ m ≲ x 0 ≲ 38.6 µ m ) and lower viscosity Ethanol ( v 0 ≈ 1.2 m / s , 11.8 µ m ≲ x 0 ≲ 33.3 µ m ) .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31882681</pmid><doi>10.1038/s41598-019-56361-7</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-12, Vol.9 (1), p.20074-9, Article 20074
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6934572
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 132/124
142/126
639/166/988
639/766/189
Capillarity
Ethanol
Humanities and Social Sciences
multidisciplinary
Reynolds number
Science
Science (multidisciplinary)
Thin films
Viscosity
title A simple analytic model for predicting the wicking velocity in micropillar arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20analytic%20model%20for%20predicting%20the%20wicking%20velocity%20in%20micropillar%20arrays&rft.jtitle=Scientific%20reports&rft.au=Krishnan,%20Siva%20Rama&rft.date=2019-12-27&rft.volume=9&rft.issue=1&rft.spage=20074&rft.epage=9&rft.pages=20074-9&rft.artnum=20074&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-56361-7&rft_dat=%3Cproquest_pubme%3E2331260982%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330969125&rft_id=info:pmid/31882681&rfr_iscdi=true