Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters
Lipases are among the most frequently used biocatalysts in organic synthesis, allowing numerous environmentally friendly and inexpensive chemical transformations. Here, we present a biomimetic strategy based on iron(III)-catalyzed oxidative coupling and selective ester monohydrolysis using lipases f...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2019-11, Vol.24 (23), p.4272 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 4272 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 24 |
creator | Ehlert, Janna Kronemann, Jenny Zumbrägel, Nadine Preller, Matthias |
description | Lipases are among the most frequently used biocatalysts in organic synthesis, allowing numerous environmentally friendly and inexpensive chemical transformations. Here, we present a biomimetic strategy based on iron(III)-catalyzed oxidative coupling and selective ester monohydrolysis using lipases for the synthesis of unsymmetric biphenyl-based esters under mild conditions. The diverse class of biphenyl esters is of pharmaceutical and technical relevance. We explored the potency of a series of nine different lipases of bacterial, fungal, and mammalian origin on their catalytic activities to cleave biphenyl esters, and optimized the reaction conditions, in terms of reaction time, temperature, pH, organic solvent, and water-organic solvent ratios, to improve the chemoselectivity, and hence control the ratio of unsymmetric versus symmetric products. Elevated temperature and increased DMSO content led to an almost exclusive monohydrolysis by the four lipases
lipase (CRL),
lipase (MML),
lipase (RNL), and
lipase (PFL). The study was complemented by in silico binding predictions to rationalize the observed differences in efficacies of the lipases to convert biphenyl esters. The optimized reaction conditions were transferred to the preparative scale with high yields, underlining the potential of the presented biomimetic approach as an alternative strategy to the commonly used transition metal-based strategies for the synthesis of diverse biphenyl esters. |
doi_str_mv | 10.3390/molecules24234272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6930668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319200440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-7220df49436210c4224e09328dece68b91d63a081caa3a996e84ea7ad64daff13</originalsourceid><addsrcrecordid>eNplkU9LHTEUxYNU1Np-ADcl0E030-afmclG0EGr8MCFug4xc8cXyUzGZEZId_3mjbxXsXZ1Q3J-h3tyEDqi5DvnivwYgge7eEhMMC5YzXbQARWMVJwI9eHNeR99TOmREEYFPd5D-5zWNWWEHKDfKzeZBFVrZuPzL-hwu4YhJCjOs3sGfJ5miPgydzH4nFzCocdnLgxugNlZ433GbVgmX8jTmH3CfYh4XgO-yWMZW-JuTHkoRHS20NMaxuw31ukT2u2NT_B5Ow_R3cX5bXtZra5_XrWnq8qWZHNVM0a6XijBJaOk3DEBRHHWdGBBNveKdpIb0lBrDDdKSWgEmNp0UnSm7yk_RCcb32m5H6CzMM7ReD1FN5iYdTBO__syurV-CM9aKk6kbIrBt61BDE8LpFkPLlnw3owQlqQZp6r8qRCkSL--kz6GJY4lnmbHQhHesEYWFd2obAwpRehfl6FEvxSs_yu4MF_epngl_jbK_wCC2Kbx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549038286</pqid></control><display><type>article</type><title>Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ehlert, Janna ; Kronemann, Jenny ; Zumbrägel, Nadine ; Preller, Matthias</creator><creatorcontrib>Ehlert, Janna ; Kronemann, Jenny ; Zumbrägel, Nadine ; Preller, Matthias</creatorcontrib><description>Lipases are among the most frequently used biocatalysts in organic synthesis, allowing numerous environmentally friendly and inexpensive chemical transformations. Here, we present a biomimetic strategy based on iron(III)-catalyzed oxidative coupling and selective ester monohydrolysis using lipases for the synthesis of unsymmetric biphenyl-based esters under mild conditions. The diverse class of biphenyl esters is of pharmaceutical and technical relevance. We explored the potency of a series of nine different lipases of bacterial, fungal, and mammalian origin on their catalytic activities to cleave biphenyl esters, and optimized the reaction conditions, in terms of reaction time, temperature, pH, organic solvent, and water-organic solvent ratios, to improve the chemoselectivity, and hence control the ratio of unsymmetric versus symmetric products. Elevated temperature and increased DMSO content led to an almost exclusive monohydrolysis by the four lipases
lipase (CRL),
lipase (MML),
lipase (RNL), and
lipase (PFL). The study was complemented by in silico binding predictions to rationalize the observed differences in efficacies of the lipases to convert biphenyl esters. The optimized reaction conditions were transferred to the preparative scale with high yields, underlining the potential of the presented biomimetic approach as an alternative strategy to the commonly used transition metal-based strategies for the synthesis of diverse biphenyl esters.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules24234272</identifier><identifier>PMID: 31771200</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Bacterial Proteins - metabolism ; Biocatalysts ; Biological Mimicry ; Biomimetics ; Biphenyl ; Candida - enzymology ; Catalysis ; Computer Simulation ; Esters ; Esters - chemistry ; Fungal Proteins - metabolism ; High temperature ; Hydrogen-Ion Concentration ; Hydrolysis ; Lipase ; Lipase - metabolism ; Mucor - enzymology ; Organic light emitting diodes ; Phenols ; Pseudomonas fluorescens ; Pseudomonas fluorescens - enzymology ; Reaction time ; Rhizopus - enzymology ; Solvents ; Temperature ; Transition metals</subject><ispartof>Molecules (Basel, Switzerland), 2019-11, Vol.24 (23), p.4272</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-7220df49436210c4224e09328dece68b91d63a081caa3a996e84ea7ad64daff13</citedby><cites>FETCH-LOGICAL-c427t-7220df49436210c4224e09328dece68b91d63a081caa3a996e84ea7ad64daff13</cites><orcidid>0000-0002-3493-8852 ; 0000-0002-7784-4012 ; 0000-0002-2187-102X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930668/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930668/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31771200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehlert, Janna</creatorcontrib><creatorcontrib>Kronemann, Jenny</creatorcontrib><creatorcontrib>Zumbrägel, Nadine</creatorcontrib><creatorcontrib>Preller, Matthias</creatorcontrib><title>Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Lipases are among the most frequently used biocatalysts in organic synthesis, allowing numerous environmentally friendly and inexpensive chemical transformations. Here, we present a biomimetic strategy based on iron(III)-catalyzed oxidative coupling and selective ester monohydrolysis using lipases for the synthesis of unsymmetric biphenyl-based esters under mild conditions. The diverse class of biphenyl esters is of pharmaceutical and technical relevance. We explored the potency of a series of nine different lipases of bacterial, fungal, and mammalian origin on their catalytic activities to cleave biphenyl esters, and optimized the reaction conditions, in terms of reaction time, temperature, pH, organic solvent, and water-organic solvent ratios, to improve the chemoselectivity, and hence control the ratio of unsymmetric versus symmetric products. Elevated temperature and increased DMSO content led to an almost exclusive monohydrolysis by the four lipases
lipase (CRL),
lipase (MML),
lipase (RNL), and
lipase (PFL). The study was complemented by in silico binding predictions to rationalize the observed differences in efficacies of the lipases to convert biphenyl esters. The optimized reaction conditions were transferred to the preparative scale with high yields, underlining the potential of the presented biomimetic approach as an alternative strategy to the commonly used transition metal-based strategies for the synthesis of diverse biphenyl esters.</description><subject>Acids</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biocatalysts</subject><subject>Biological Mimicry</subject><subject>Biomimetics</subject><subject>Biphenyl</subject><subject>Candida - enzymology</subject><subject>Catalysis</subject><subject>Computer Simulation</subject><subject>Esters</subject><subject>Esters - chemistry</subject><subject>Fungal Proteins - metabolism</subject><subject>High temperature</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Lipase</subject><subject>Lipase - metabolism</subject><subject>Mucor - enzymology</subject><subject>Organic light emitting diodes</subject><subject>Phenols</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - enzymology</subject><subject>Reaction time</subject><subject>Rhizopus - enzymology</subject><subject>Solvents</subject><subject>Temperature</subject><subject>Transition metals</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkU9LHTEUxYNU1Np-ADcl0E030-afmclG0EGr8MCFug4xc8cXyUzGZEZId_3mjbxXsXZ1Q3J-h3tyEDqi5DvnivwYgge7eEhMMC5YzXbQARWMVJwI9eHNeR99TOmREEYFPd5D-5zWNWWEHKDfKzeZBFVrZuPzL-hwu4YhJCjOs3sGfJ5miPgydzH4nFzCocdnLgxugNlZ433GbVgmX8jTmH3CfYh4XgO-yWMZW-JuTHkoRHS20NMaxuw31ukT2u2NT_B5Ow_R3cX5bXtZra5_XrWnq8qWZHNVM0a6XijBJaOk3DEBRHHWdGBBNveKdpIb0lBrDDdKSWgEmNp0UnSm7yk_RCcb32m5H6CzMM7ReD1FN5iYdTBO__syurV-CM9aKk6kbIrBt61BDE8LpFkPLlnw3owQlqQZp6r8qRCkSL--kz6GJY4lnmbHQhHesEYWFd2obAwpRehfl6FEvxSs_yu4MF_epngl_jbK_wCC2Kbx</recordid><startdate>20191123</startdate><enddate>20191123</enddate><creator>Ehlert, Janna</creator><creator>Kronemann, Jenny</creator><creator>Zumbrägel, Nadine</creator><creator>Preller, Matthias</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3493-8852</orcidid><orcidid>https://orcid.org/0000-0002-7784-4012</orcidid><orcidid>https://orcid.org/0000-0002-2187-102X</orcidid></search><sort><creationdate>20191123</creationdate><title>Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters</title><author>Ehlert, Janna ; Kronemann, Jenny ; Zumbrägel, Nadine ; Preller, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-7220df49436210c4224e09328dece68b91d63a081caa3a996e84ea7ad64daff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acids</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biocatalysts</topic><topic>Biological Mimicry</topic><topic>Biomimetics</topic><topic>Biphenyl</topic><topic>Candida - enzymology</topic><topic>Catalysis</topic><topic>Computer Simulation</topic><topic>Esters</topic><topic>Esters - chemistry</topic><topic>Fungal Proteins - metabolism</topic><topic>High temperature</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Lipase</topic><topic>Lipase - metabolism</topic><topic>Mucor - enzymology</topic><topic>Organic light emitting diodes</topic><topic>Phenols</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - enzymology</topic><topic>Reaction time</topic><topic>Rhizopus - enzymology</topic><topic>Solvents</topic><topic>Temperature</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehlert, Janna</creatorcontrib><creatorcontrib>Kronemann, Jenny</creatorcontrib><creatorcontrib>Zumbrägel, Nadine</creatorcontrib><creatorcontrib>Preller, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehlert, Janna</au><au>Kronemann, Jenny</au><au>Zumbrägel, Nadine</au><au>Preller, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2019-11-23</date><risdate>2019</risdate><volume>24</volume><issue>23</issue><spage>4272</spage><pages>4272-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Lipases are among the most frequently used biocatalysts in organic synthesis, allowing numerous environmentally friendly and inexpensive chemical transformations. Here, we present a biomimetic strategy based on iron(III)-catalyzed oxidative coupling and selective ester monohydrolysis using lipases for the synthesis of unsymmetric biphenyl-based esters under mild conditions. The diverse class of biphenyl esters is of pharmaceutical and technical relevance. We explored the potency of a series of nine different lipases of bacterial, fungal, and mammalian origin on their catalytic activities to cleave biphenyl esters, and optimized the reaction conditions, in terms of reaction time, temperature, pH, organic solvent, and water-organic solvent ratios, to improve the chemoselectivity, and hence control the ratio of unsymmetric versus symmetric products. Elevated temperature and increased DMSO content led to an almost exclusive monohydrolysis by the four lipases
lipase (CRL),
lipase (MML),
lipase (RNL), and
lipase (PFL). The study was complemented by in silico binding predictions to rationalize the observed differences in efficacies of the lipases to convert biphenyl esters. The optimized reaction conditions were transferred to the preparative scale with high yields, underlining the potential of the presented biomimetic approach as an alternative strategy to the commonly used transition metal-based strategies for the synthesis of diverse biphenyl esters.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31771200</pmid><doi>10.3390/molecules24234272</doi><orcidid>https://orcid.org/0000-0002-3493-8852</orcidid><orcidid>https://orcid.org/0000-0002-7784-4012</orcidid><orcidid>https://orcid.org/0000-0002-2187-102X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2019-11, Vol.24 (23), p.4272 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6930668 |
source | MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acids Bacterial Proteins - metabolism Biocatalysts Biological Mimicry Biomimetics Biphenyl Candida - enzymology Catalysis Computer Simulation Esters Esters - chemistry Fungal Proteins - metabolism High temperature Hydrogen-Ion Concentration Hydrolysis Lipase Lipase - metabolism Mucor - enzymology Organic light emitting diodes Phenols Pseudomonas fluorescens Pseudomonas fluorescens - enzymology Reaction time Rhizopus - enzymology Solvents Temperature Transition metals |
title | Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipase-Catalyzed%20Chemoselective%20Ester%20Hydrolysis%20of%20Biomimetically%20Coupled%20Aryls%20for%20the%20Synthesis%20of%20Unsymmetric%20Biphenyl%20Esters&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Ehlert,%20Janna&rft.date=2019-11-23&rft.volume=24&rft.issue=23&rft.spage=4272&rft.pages=4272-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules24234272&rft_dat=%3Cproquest_pubme%3E2319200440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549038286&rft_id=info:pmid/31771200&rfr_iscdi=true |