Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation

Low solubility and tumor-targeted delivery of ginsenosides to avoid off-target cytotoxicity are challenges for clinical trials. In the present study, we report on a methodology for the synthesis of polyethylene glycol (PEG)-ginsenoside conjugates through a hydrolysable ester bond using the hydrophil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2019-11, Vol.24 (23), p.4367
Hauptverfasser: Mathiyalagan, Ramya, Wang, Chao, Kim, Yeon Ju, Castro-Aceituno, Verónica, Ahn, Sungeun, Subramaniyam, Sathiyamoorthy, Simu, Shakina Yesmin, Jiménez-Pérez, Zuly Elizabeth, Yang, Deok Chun, Jung, Seok-Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 4367
container_title Molecules (Basel, Switzerland)
container_volume 24
creator Mathiyalagan, Ramya
Wang, Chao
Kim, Yeon Ju
Castro-Aceituno, Verónica
Ahn, Sungeun
Subramaniyam, Sathiyamoorthy
Simu, Shakina Yesmin
Jiménez-Pérez, Zuly Elizabeth
Yang, Deok Chun
Jung, Seok-Kyu
description Low solubility and tumor-targeted delivery of ginsenosides to avoid off-target cytotoxicity are challenges for clinical trials. In the present study, we report on a methodology for the synthesis of polyethylene glycol (PEG)-ginsenoside conjugates through a hydrolysable ester bond using the hydrophilic polymer polyethylene glycol with the hydrophobic ginsenosides Rh1 and Rh2 to enhance water solubility and passive targeted delivery. The resulting conjugates were characterized by H nuclear magnetic resonance ( H NMR) and Fourier-transform infrared spectroscopy (FT-IR). H NMR revealed that the C-6 and C-3 sugar hydroxyl groups of Rh1 and Rh2 were esterified. The conjugates showed spherical shapes that were monitored by field-emission transmission electron microscopy (FE-TEM), and the average sizes of the particles were 62 ± 5.72 nm and 134 ± 8.75 nm for PEG-Rh1and PEG-Rh2, respectively (measured using a particle size analyzer). Owing to the hydrophilic enhancing properties of PEG, PEG-Rh1 and PEG-Rh2 solubility was greatly enhanced compared to Rh1 and Rh2 alone. The release rates of Rh1 and Rh2 were increased in lower pH conditions (pH 5.0), that for pathophysiological sites as well as for intracellular endosomes and lysosomes, compared to normal-cell pH conditions (pH 7.4). In vitro cytotoxicity assays showed that the PEG-Rh1conjugates had greater anticancer activity in a human non-small cell lung cancer cell line (A549) compared to Rh1 alone, whereas PEG-Rh2 showed lower cytotoxicity in lung cancer cells. On the other hand, both PEG-Rh1 and PEG-Rh2 showed non-cytotoxicity in a nondiseased murine macrophage cell line (RAW 264.7) compared to free Rh1 and Rh2, but PEG-Rh2 exhibited increased efficacy against inflammation by greatly inhibiting nitric oxide production. Thus, the overall conclusion of our study is that PEG conjugation promotes the properties of Rh1 for anticancer and Rh2 for inflammation treatments. Depends on the disease models, they could be potential drug candidates for further studies.
doi_str_mv 10.3390/molecules24234367
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6930446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549045959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-dcdc255a772e68e305ea63f9a54bdd5b21b92e5cc11e71fcbf8f8a545994e5843</originalsourceid><addsrcrecordid>eNplkU-LFDEQxYMo7rr6AbxIwIuX1vztnlwEGdZxYcBF1nNIpyszGdLJmHQv9MHvbpxdl1VPFVK_91KVh9BrSt5zrsiHMQWwc4DCBOOCt90TdE4FIw0nQj19dD5DL0o5EMKooPI5OuO0U5JLdo5-Xmc4mmwmnyJODl-nsMC0XwJEwJuw2BSajY8FYip-APxtT7GJQ60Mr1M8zDszQTld3ezBZ3zpnLfGLtjsTNVNeDvHHV6baCGfsKvoghnH04sv0TNnQoFX9_UCff98ebP-0my_bq7Wn7aNFaybmsEOlklpuo5BuwJOJJiWO2Wk6IdB9oz2ioG0llLoqLO9W7lVbUqlBMiV4Bfo453vce5HGCzEKZugj9mPJi86Ga__7kS_17t0q1tVv0-01eDdvUFOP2Yokx59sRCCiZDmohlntG1b1dKKvv0HPaQ5x7qeZlIoUqeSqlL0jrI5lZLBPQxDif4drv4v3Kp583iLB8WfNPkvEHakpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549045959</pqid></control><display><type>article</type><title>Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mathiyalagan, Ramya ; Wang, Chao ; Kim, Yeon Ju ; Castro-Aceituno, Verónica ; Ahn, Sungeun ; Subramaniyam, Sathiyamoorthy ; Simu, Shakina Yesmin ; Jiménez-Pérez, Zuly Elizabeth ; Yang, Deok Chun ; Jung, Seok-Kyu</creator><creatorcontrib>Mathiyalagan, Ramya ; Wang, Chao ; Kim, Yeon Ju ; Castro-Aceituno, Verónica ; Ahn, Sungeun ; Subramaniyam, Sathiyamoorthy ; Simu, Shakina Yesmin ; Jiménez-Pérez, Zuly Elizabeth ; Yang, Deok Chun ; Jung, Seok-Kyu</creatorcontrib><description>Low solubility and tumor-targeted delivery of ginsenosides to avoid off-target cytotoxicity are challenges for clinical trials. In the present study, we report on a methodology for the synthesis of polyethylene glycol (PEG)-ginsenoside conjugates through a hydrolysable ester bond using the hydrophilic polymer polyethylene glycol with the hydrophobic ginsenosides Rh1 and Rh2 to enhance water solubility and passive targeted delivery. The resulting conjugates were characterized by H nuclear magnetic resonance ( H NMR) and Fourier-transform infrared spectroscopy (FT-IR). H NMR revealed that the C-6 and C-3 sugar hydroxyl groups of Rh1 and Rh2 were esterified. The conjugates showed spherical shapes that were monitored by field-emission transmission electron microscopy (FE-TEM), and the average sizes of the particles were 62 ± 5.72 nm and 134 ± 8.75 nm for PEG-Rh1and PEG-Rh2, respectively (measured using a particle size analyzer). Owing to the hydrophilic enhancing properties of PEG, PEG-Rh1 and PEG-Rh2 solubility was greatly enhanced compared to Rh1 and Rh2 alone. The release rates of Rh1 and Rh2 were increased in lower pH conditions (pH 5.0), that for pathophysiological sites as well as for intracellular endosomes and lysosomes, compared to normal-cell pH conditions (pH 7.4). In vitro cytotoxicity assays showed that the PEG-Rh1conjugates had greater anticancer activity in a human non-small cell lung cancer cell line (A549) compared to Rh1 alone, whereas PEG-Rh2 showed lower cytotoxicity in lung cancer cells. On the other hand, both PEG-Rh1 and PEG-Rh2 showed non-cytotoxicity in a nondiseased murine macrophage cell line (RAW 264.7) compared to free Rh1 and Rh2, but PEG-Rh2 exhibited increased efficacy against inflammation by greatly inhibiting nitric oxide production. Thus, the overall conclusion of our study is that PEG conjugation promotes the properties of Rh1 for anticancer and Rh2 for inflammation treatments. Depends on the disease models, they could be potential drug candidates for further studies.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules24234367</identifier><identifier>PMID: 31795352</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>A549 Cells ; Animals ; Antineoplastic Agents, Phytogenic - chemistry ; Antineoplastic Agents, Phytogenic - pharmacology ; Antitumor activity ; Bioavailability ; Cancer therapies ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Clinical trials ; Conjugates ; Conjugation ; Cytotoxicity ; Drug Delivery Systems ; Drug development ; Drugs ; Endosomes ; Esterification ; FDA approval ; Ginsenosides ; Ginsenosides - chemistry ; Ginsenosides - pharmacology ; Humans ; Hydrophilicity ; Hydrophobicity ; Hydroxyl groups ; Inflammation ; Inflammation - drug therapy ; Inflammation - metabolism ; Inflammation - pathology ; Infrared spectroscopy ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Lysosomes ; Macrophages ; Macrophages - metabolism ; Macrophages - pathology ; Mice ; Nitric oxide ; NMR ; Non-small cell lung carcinoma ; Nuclear magnetic resonance ; Particle size ; Pollution monitoring ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - pharmacology ; Polymers ; RAW 264.7 Cells ; Solubility ; Transmission electron microscopy</subject><ispartof>Molecules (Basel, Switzerland), 2019-11, Vol.24 (23), p.4367</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-dcdc255a772e68e305ea63f9a54bdd5b21b92e5cc11e71fcbf8f8a545994e5843</citedby><cites>FETCH-LOGICAL-c427t-dcdc255a772e68e305ea63f9a54bdd5b21b92e5cc11e71fcbf8f8a545994e5843</cites><orcidid>0000-0002-5285-3975 ; 0000-0003-2394-4728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31795352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathiyalagan, Ramya</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Kim, Yeon Ju</creatorcontrib><creatorcontrib>Castro-Aceituno, Verónica</creatorcontrib><creatorcontrib>Ahn, Sungeun</creatorcontrib><creatorcontrib>Subramaniyam, Sathiyamoorthy</creatorcontrib><creatorcontrib>Simu, Shakina Yesmin</creatorcontrib><creatorcontrib>Jiménez-Pérez, Zuly Elizabeth</creatorcontrib><creatorcontrib>Yang, Deok Chun</creatorcontrib><creatorcontrib>Jung, Seok-Kyu</creatorcontrib><title>Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Low solubility and tumor-targeted delivery of ginsenosides to avoid off-target cytotoxicity are challenges for clinical trials. In the present study, we report on a methodology for the synthesis of polyethylene glycol (PEG)-ginsenoside conjugates through a hydrolysable ester bond using the hydrophilic polymer polyethylene glycol with the hydrophobic ginsenosides Rh1 and Rh2 to enhance water solubility and passive targeted delivery. The resulting conjugates were characterized by H nuclear magnetic resonance ( H NMR) and Fourier-transform infrared spectroscopy (FT-IR). H NMR revealed that the C-6 and C-3 sugar hydroxyl groups of Rh1 and Rh2 were esterified. The conjugates showed spherical shapes that were monitored by field-emission transmission electron microscopy (FE-TEM), and the average sizes of the particles were 62 ± 5.72 nm and 134 ± 8.75 nm for PEG-Rh1and PEG-Rh2, respectively (measured using a particle size analyzer). Owing to the hydrophilic enhancing properties of PEG, PEG-Rh1 and PEG-Rh2 solubility was greatly enhanced compared to Rh1 and Rh2 alone. The release rates of Rh1 and Rh2 were increased in lower pH conditions (pH 5.0), that for pathophysiological sites as well as for intracellular endosomes and lysosomes, compared to normal-cell pH conditions (pH 7.4). In vitro cytotoxicity assays showed that the PEG-Rh1conjugates had greater anticancer activity in a human non-small cell lung cancer cell line (A549) compared to Rh1 alone, whereas PEG-Rh2 showed lower cytotoxicity in lung cancer cells. On the other hand, both PEG-Rh1 and PEG-Rh2 showed non-cytotoxicity in a nondiseased murine macrophage cell line (RAW 264.7) compared to free Rh1 and Rh2, but PEG-Rh2 exhibited increased efficacy against inflammation by greatly inhibiting nitric oxide production. Thus, the overall conclusion of our study is that PEG conjugation promotes the properties of Rh1 for anticancer and Rh2 for inflammation treatments. Depends on the disease models, they could be potential drug candidates for further studies.</description><subject>A549 Cells</subject><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - chemistry</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Antitumor activity</subject><subject>Bioavailability</subject><subject>Cancer therapies</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Clinical trials</subject><subject>Conjugates</subject><subject>Conjugation</subject><subject>Cytotoxicity</subject><subject>Drug Delivery Systems</subject><subject>Drug development</subject><subject>Drugs</subject><subject>Endosomes</subject><subject>Esterification</subject><subject>FDA approval</subject><subject>Ginsenosides</subject><subject>Ginsenosides - chemistry</subject><subject>Ginsenosides - pharmacology</subject><subject>Humans</subject><subject>Hydrophilicity</subject><subject>Hydrophobicity</subject><subject>Hydroxyl groups</subject><subject>Inflammation</subject><subject>Inflammation - drug therapy</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - pathology</subject><subject>Infrared spectroscopy</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Lysosomes</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - pathology</subject><subject>Mice</subject><subject>Nitric oxide</subject><subject>NMR</subject><subject>Non-small cell lung carcinoma</subject><subject>Nuclear magnetic resonance</subject><subject>Particle size</subject><subject>Pollution monitoring</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - pharmacology</subject><subject>Polymers</subject><subject>RAW 264.7 Cells</subject><subject>Solubility</subject><subject>Transmission electron microscopy</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU-LFDEQxYMo7rr6AbxIwIuX1vztnlwEGdZxYcBF1nNIpyszGdLJmHQv9MHvbpxdl1VPFVK_91KVh9BrSt5zrsiHMQWwc4DCBOOCt90TdE4FIw0nQj19dD5DL0o5EMKooPI5OuO0U5JLdo5-Xmc4mmwmnyJODl-nsMC0XwJEwJuw2BSajY8FYip-APxtT7GJQ60Mr1M8zDszQTld3ezBZ3zpnLfGLtjsTNVNeDvHHV6baCGfsKvoghnH04sv0TNnQoFX9_UCff98ebP-0my_bq7Wn7aNFaybmsEOlklpuo5BuwJOJJiWO2Wk6IdB9oz2ioG0llLoqLO9W7lVbUqlBMiV4Bfo453vce5HGCzEKZugj9mPJi86Ga__7kS_17t0q1tVv0-01eDdvUFOP2Yokx59sRCCiZDmohlntG1b1dKKvv0HPaQ5x7qeZlIoUqeSqlL0jrI5lZLBPQxDif4drv4v3Kp583iLB8WfNPkvEHakpQ</recordid><startdate>20191129</startdate><enddate>20191129</enddate><creator>Mathiyalagan, Ramya</creator><creator>Wang, Chao</creator><creator>Kim, Yeon Ju</creator><creator>Castro-Aceituno, Verónica</creator><creator>Ahn, Sungeun</creator><creator>Subramaniyam, Sathiyamoorthy</creator><creator>Simu, Shakina Yesmin</creator><creator>Jiménez-Pérez, Zuly Elizabeth</creator><creator>Yang, Deok Chun</creator><creator>Jung, Seok-Kyu</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5285-3975</orcidid><orcidid>https://orcid.org/0000-0003-2394-4728</orcidid></search><sort><creationdate>20191129</creationdate><title>Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation</title><author>Mathiyalagan, Ramya ; Wang, Chao ; Kim, Yeon Ju ; Castro-Aceituno, Verónica ; Ahn, Sungeun ; Subramaniyam, Sathiyamoorthy ; Simu, Shakina Yesmin ; Jiménez-Pérez, Zuly Elizabeth ; Yang, Deok Chun ; Jung, Seok-Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-dcdc255a772e68e305ea63f9a54bdd5b21b92e5cc11e71fcbf8f8a545994e5843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A549 Cells</topic><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - chemistry</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Antitumor activity</topic><topic>Bioavailability</topic><topic>Cancer therapies</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Clinical trials</topic><topic>Conjugates</topic><topic>Conjugation</topic><topic>Cytotoxicity</topic><topic>Drug Delivery Systems</topic><topic>Drug development</topic><topic>Drugs</topic><topic>Endosomes</topic><topic>Esterification</topic><topic>FDA approval</topic><topic>Ginsenosides</topic><topic>Ginsenosides - chemistry</topic><topic>Ginsenosides - pharmacology</topic><topic>Humans</topic><topic>Hydrophilicity</topic><topic>Hydrophobicity</topic><topic>Hydroxyl groups</topic><topic>Inflammation</topic><topic>Inflammation - drug therapy</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - pathology</topic><topic>Infrared spectroscopy</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Lysosomes</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - pathology</topic><topic>Mice</topic><topic>Nitric oxide</topic><topic>NMR</topic><topic>Non-small cell lung carcinoma</topic><topic>Nuclear magnetic resonance</topic><topic>Particle size</topic><topic>Pollution monitoring</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - pharmacology</topic><topic>Polymers</topic><topic>RAW 264.7 Cells</topic><topic>Solubility</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathiyalagan, Ramya</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Kim, Yeon Ju</creatorcontrib><creatorcontrib>Castro-Aceituno, Verónica</creatorcontrib><creatorcontrib>Ahn, Sungeun</creatorcontrib><creatorcontrib>Subramaniyam, Sathiyamoorthy</creatorcontrib><creatorcontrib>Simu, Shakina Yesmin</creatorcontrib><creatorcontrib>Jiménez-Pérez, Zuly Elizabeth</creatorcontrib><creatorcontrib>Yang, Deok Chun</creatorcontrib><creatorcontrib>Jung, Seok-Kyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathiyalagan, Ramya</au><au>Wang, Chao</au><au>Kim, Yeon Ju</au><au>Castro-Aceituno, Verónica</au><au>Ahn, Sungeun</au><au>Subramaniyam, Sathiyamoorthy</au><au>Simu, Shakina Yesmin</au><au>Jiménez-Pérez, Zuly Elizabeth</au><au>Yang, Deok Chun</au><au>Jung, Seok-Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2019-11-29</date><risdate>2019</risdate><volume>24</volume><issue>23</issue><spage>4367</spage><pages>4367-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Low solubility and tumor-targeted delivery of ginsenosides to avoid off-target cytotoxicity are challenges for clinical trials. In the present study, we report on a methodology for the synthesis of polyethylene glycol (PEG)-ginsenoside conjugates through a hydrolysable ester bond using the hydrophilic polymer polyethylene glycol with the hydrophobic ginsenosides Rh1 and Rh2 to enhance water solubility and passive targeted delivery. The resulting conjugates were characterized by H nuclear magnetic resonance ( H NMR) and Fourier-transform infrared spectroscopy (FT-IR). H NMR revealed that the C-6 and C-3 sugar hydroxyl groups of Rh1 and Rh2 were esterified. The conjugates showed spherical shapes that were monitored by field-emission transmission electron microscopy (FE-TEM), and the average sizes of the particles were 62 ± 5.72 nm and 134 ± 8.75 nm for PEG-Rh1and PEG-Rh2, respectively (measured using a particle size analyzer). Owing to the hydrophilic enhancing properties of PEG, PEG-Rh1 and PEG-Rh2 solubility was greatly enhanced compared to Rh1 and Rh2 alone. The release rates of Rh1 and Rh2 were increased in lower pH conditions (pH 5.0), that for pathophysiological sites as well as for intracellular endosomes and lysosomes, compared to normal-cell pH conditions (pH 7.4). In vitro cytotoxicity assays showed that the PEG-Rh1conjugates had greater anticancer activity in a human non-small cell lung cancer cell line (A549) compared to Rh1 alone, whereas PEG-Rh2 showed lower cytotoxicity in lung cancer cells. On the other hand, both PEG-Rh1 and PEG-Rh2 showed non-cytotoxicity in a nondiseased murine macrophage cell line (RAW 264.7) compared to free Rh1 and Rh2, but PEG-Rh2 exhibited increased efficacy against inflammation by greatly inhibiting nitric oxide production. Thus, the overall conclusion of our study is that PEG conjugation promotes the properties of Rh1 for anticancer and Rh2 for inflammation treatments. Depends on the disease models, they could be potential drug candidates for further studies.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31795352</pmid><doi>10.3390/molecules24234367</doi><orcidid>https://orcid.org/0000-0002-5285-3975</orcidid><orcidid>https://orcid.org/0000-0003-2394-4728</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2019-11, Vol.24 (23), p.4367
issn 1420-3049
1420-3049
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6930446
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects A549 Cells
Animals
Antineoplastic Agents, Phytogenic - chemistry
Antineoplastic Agents, Phytogenic - pharmacology
Antitumor activity
Bioavailability
Cancer therapies
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Clinical trials
Conjugates
Conjugation
Cytotoxicity
Drug Delivery Systems
Drug development
Drugs
Endosomes
Esterification
FDA approval
Ginsenosides
Ginsenosides - chemistry
Ginsenosides - pharmacology
Humans
Hydrophilicity
Hydrophobicity
Hydroxyl groups
Inflammation
Inflammation - drug therapy
Inflammation - metabolism
Inflammation - pathology
Infrared spectroscopy
Lung cancer
Lung Neoplasms - drug therapy
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Lysosomes
Macrophages
Macrophages - metabolism
Macrophages - pathology
Mice
Nitric oxide
NMR
Non-small cell lung carcinoma
Nuclear magnetic resonance
Particle size
Pollution monitoring
Polyethylene glycol
Polyethylene Glycols - chemistry
Polyethylene Glycols - pharmacology
Polymers
RAW 264.7 Cells
Solubility
Transmission electron microscopy
title Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Polyethylene%20Glycol-Ginsenoside%20Rh1%20and%20Rh2%20Conjugates%20and%20Their%20Efficacy%20against%20Lung%20Cancer%20and%20Inflammation&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Mathiyalagan,%20Ramya&rft.date=2019-11-29&rft.volume=24&rft.issue=23&rft.spage=4367&rft.pages=4367-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules24234367&rft_dat=%3Cproquest_pubme%3E2549045959%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549045959&rft_id=info:pmid/31795352&rfr_iscdi=true