Acoustic Emissions as a Non-invasive Biomarker of the Structural Health of the Knee
The longitudinal assessment of joint health is a long-standing issue in the management of musculoskeletal injuries. The acoustic emissions (AEs) produced by joint articulation could serve as a biomarker for joint health assessment, but their use has been limited by a lack of mechanistic understandin...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2020-01, Vol.48 (1), p.225-235 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 1 |
container_start_page | 225 |
container_title | Annals of biomedical engineering |
container_volume | 48 |
creator | Whittingslow, Daniel. C. Jeong, Hyeon-Ki Ganti, Venu G. Kirkpatrick, Nathan J. Kogler, Geza F. Inan, Omer T. |
description | The longitudinal assessment of joint health is a long-standing issue in the management of musculoskeletal injuries. The acoustic emissions (AEs) produced by joint articulation could serve as a biomarker for joint health assessment, but their use has been limited by a lack of mechanistic understanding of their creation. In this paper, we investigate that mechanism using an injury model in human lower-limb cadavers, and relate AEs to joint kinematics. Using our custom joint sound recording system, we recorded the AEs from nine cadaver legs in four stages: at baseline, after a sham surgery, after a meniscus tear, and post-meniscectomy. We compare the resulting AEs using their
b
-values. We then compare joint anatomy/kinematics to the AEs using the X-ray reconstruction of moving morphology (XROMM) technique. After the meniscus tear the number and amplitude of the AE peaks greatly increased from baseline and sham (
b
-value = 1.33 ± 0.15;
p
|
doi_str_mv | 10.1007/s10439-019-02333-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6930345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265792457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-94de883658a31ca76c35d870cef0fd729aacc95f97f92ea85d9e7ae20f46547d3</originalsourceid><addsrcrecordid>eNp9UU1PFTEUbYgGnk__gAsyiRs3o21vP6YbEiQoRgILdN3Uzh1eYV6L7cwL_nuLDxBdmLTp4px7eu45hLxm9B2jVL8vjAowLWX1cgBob3fIgkkNrVGdekYWlBraKqPEHnlRyhWljHUgd8keMJBUcbogF4c-zWUKvjleh1JCiqVx9TRnKbYhblwJG2w-hLR2-Rpzk4ZmWmFzMeXZT3N2Y3OCbpxWD8CXiPiSPB_cWPDV_bsk3z4efz06aU_PP30-OjxtvQQ-tUb02HWgZOeAeaeVB9l3mnoc6NBrbpzz3sjB6MFwdJ3sDWqHnA5CSaF7WJKDre7N_H2Nvcc4VUP2Jodq9qdNLti_kRhW9jJtrDJAQcgq8PZeIKcfM5bJ1gw8jqOLWFOxnCupDRc10iV58w_1Ks051vXuWEIo4MxUFt-yfE6lZBwezTBq7zqz285s7cz-7sze1qH9p2s8jjyUVAmwJZQKxUvMf_7-j-wvcGSjBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264463219</pqid></control><display><type>article</type><title>Acoustic Emissions as a Non-invasive Biomarker of the Structural Health of the Knee</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Whittingslow, Daniel. C. ; Jeong, Hyeon-Ki ; Ganti, Venu G. ; Kirkpatrick, Nathan J. ; Kogler, Geza F. ; Inan, Omer T.</creator><creatorcontrib>Whittingslow, Daniel. C. ; Jeong, Hyeon-Ki ; Ganti, Venu G. ; Kirkpatrick, Nathan J. ; Kogler, Geza F. ; Inan, Omer T.</creatorcontrib><description>The longitudinal assessment of joint health is a long-standing issue in the management of musculoskeletal injuries. The acoustic emissions (AEs) produced by joint articulation could serve as a biomarker for joint health assessment, but their use has been limited by a lack of mechanistic understanding of their creation. In this paper, we investigate that mechanism using an injury model in human lower-limb cadavers, and relate AEs to joint kinematics. Using our custom joint sound recording system, we recorded the AEs from nine cadaver legs in four stages: at baseline, after a sham surgery, after a meniscus tear, and post-meniscectomy. We compare the resulting AEs using their
b
-values. We then compare joint anatomy/kinematics to the AEs using the X-ray reconstruction of moving morphology (XROMM) technique. After the meniscus tear the number and amplitude of the AE peaks greatly increased from baseline and sham (
b
-value = 1.33 ± 0.15;
p
< 0.05). The XROMM analysis showed a close correlation between the minimal inter-joint distances (0.251 ± 0.082 cm during extension, 0.265 ± .003 during flexion, at 145°) and a large increase in the AEs. This work provides key insight into the nature of joint AEs, and details a novel technique and analysis for recording and interpreting these biosignals.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-019-02333-x</identifier><identifier>PMID: 31350620</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustic emission ; Acoustics ; Aged ; Biochemistry ; Biological and Medical Physics ; Biomarkers ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Cadaver ; Cadavers ; Classical Mechanics ; Correlation analysis ; Health ; Humans ; Joints (anatomy) ; Kinematics ; Knee ; Knee Joint ; Lower Extremity ; Meniscus ; Middle Aged ; Morphology ; Sound recording ; Surgery</subject><ispartof>Annals of biomedical engineering, 2020-01, Vol.48 (1), p.225-235</ispartof><rights>Biomedical Engineering Society 2019</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-94de883658a31ca76c35d870cef0fd729aacc95f97f92ea85d9e7ae20f46547d3</citedby><cites>FETCH-LOGICAL-c532t-94de883658a31ca76c35d870cef0fd729aacc95f97f92ea85d9e7ae20f46547d3</cites><orcidid>0000-0003-4399-7579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-019-02333-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-019-02333-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31350620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whittingslow, Daniel. C.</creatorcontrib><creatorcontrib>Jeong, Hyeon-Ki</creatorcontrib><creatorcontrib>Ganti, Venu G.</creatorcontrib><creatorcontrib>Kirkpatrick, Nathan J.</creatorcontrib><creatorcontrib>Kogler, Geza F.</creatorcontrib><creatorcontrib>Inan, Omer T.</creatorcontrib><title>Acoustic Emissions as a Non-invasive Biomarker of the Structural Health of the Knee</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>The longitudinal assessment of joint health is a long-standing issue in the management of musculoskeletal injuries. The acoustic emissions (AEs) produced by joint articulation could serve as a biomarker for joint health assessment, but their use has been limited by a lack of mechanistic understanding of their creation. In this paper, we investigate that mechanism using an injury model in human lower-limb cadavers, and relate AEs to joint kinematics. Using our custom joint sound recording system, we recorded the AEs from nine cadaver legs in four stages: at baseline, after a sham surgery, after a meniscus tear, and post-meniscectomy. We compare the resulting AEs using their
b
-values. We then compare joint anatomy/kinematics to the AEs using the X-ray reconstruction of moving morphology (XROMM) technique. After the meniscus tear the number and amplitude of the AE peaks greatly increased from baseline and sham (
b
-value = 1.33 ± 0.15;
p
< 0.05). The XROMM analysis showed a close correlation between the minimal inter-joint distances (0.251 ± 0.082 cm during extension, 0.265 ± .003 during flexion, at 145°) and a large increase in the AEs. This work provides key insight into the nature of joint AEs, and details a novel technique and analysis for recording and interpreting these biosignals.</description><subject>Acoustic emission</subject><subject>Acoustics</subject><subject>Aged</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Cadaver</subject><subject>Cadavers</subject><subject>Classical Mechanics</subject><subject>Correlation analysis</subject><subject>Health</subject><subject>Humans</subject><subject>Joints (anatomy)</subject><subject>Kinematics</subject><subject>Knee</subject><subject>Knee Joint</subject><subject>Lower Extremity</subject><subject>Meniscus</subject><subject>Middle Aged</subject><subject>Morphology</subject><subject>Sound recording</subject><subject>Surgery</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1PFTEUbYgGnk__gAsyiRs3o21vP6YbEiQoRgILdN3Uzh1eYV6L7cwL_nuLDxBdmLTp4px7eu45hLxm9B2jVL8vjAowLWX1cgBob3fIgkkNrVGdekYWlBraKqPEHnlRyhWljHUgd8keMJBUcbogF4c-zWUKvjleh1JCiqVx9TRnKbYhblwJG2w-hLR2-Rpzk4ZmWmFzMeXZT3N2Y3OCbpxWD8CXiPiSPB_cWPDV_bsk3z4efz06aU_PP30-OjxtvQQ-tUb02HWgZOeAeaeVB9l3mnoc6NBrbpzz3sjB6MFwdJ3sDWqHnA5CSaF7WJKDre7N_H2Nvcc4VUP2Jodq9qdNLti_kRhW9jJtrDJAQcgq8PZeIKcfM5bJ1gw8jqOLWFOxnCupDRc10iV58w_1Ks051vXuWEIo4MxUFt-yfE6lZBwezTBq7zqz285s7cz-7sze1qH9p2s8jjyUVAmwJZQKxUvMf_7-j-wvcGSjBA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Whittingslow, Daniel. C.</creator><creator>Jeong, Hyeon-Ki</creator><creator>Ganti, Venu G.</creator><creator>Kirkpatrick, Nathan J.</creator><creator>Kogler, Geza F.</creator><creator>Inan, Omer T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4399-7579</orcidid></search><sort><creationdate>20200101</creationdate><title>Acoustic Emissions as a Non-invasive Biomarker of the Structural Health of the Knee</title><author>Whittingslow, Daniel. C. ; Jeong, Hyeon-Ki ; Ganti, Venu G. ; Kirkpatrick, Nathan J. ; Kogler, Geza F. ; Inan, Omer T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-94de883658a31ca76c35d870cef0fd729aacc95f97f92ea85d9e7ae20f46547d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic emission</topic><topic>Acoustics</topic><topic>Aged</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Cadaver</topic><topic>Cadavers</topic><topic>Classical Mechanics</topic><topic>Correlation analysis</topic><topic>Health</topic><topic>Humans</topic><topic>Joints (anatomy)</topic><topic>Kinematics</topic><topic>Knee</topic><topic>Knee Joint</topic><topic>Lower Extremity</topic><topic>Meniscus</topic><topic>Middle Aged</topic><topic>Morphology</topic><topic>Sound recording</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whittingslow, Daniel. C.</creatorcontrib><creatorcontrib>Jeong, Hyeon-Ki</creatorcontrib><creatorcontrib>Ganti, Venu G.</creatorcontrib><creatorcontrib>Kirkpatrick, Nathan J.</creatorcontrib><creatorcontrib>Kogler, Geza F.</creatorcontrib><creatorcontrib>Inan, Omer T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whittingslow, Daniel. C.</au><au>Jeong, Hyeon-Ki</au><au>Ganti, Venu G.</au><au>Kirkpatrick, Nathan J.</au><au>Kogler, Geza F.</au><au>Inan, Omer T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Emissions as a Non-invasive Biomarker of the Structural Health of the Knee</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>48</volume><issue>1</issue><spage>225</spage><epage>235</epage><pages>225-235</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>The longitudinal assessment of joint health is a long-standing issue in the management of musculoskeletal injuries. The acoustic emissions (AEs) produced by joint articulation could serve as a biomarker for joint health assessment, but their use has been limited by a lack of mechanistic understanding of their creation. In this paper, we investigate that mechanism using an injury model in human lower-limb cadavers, and relate AEs to joint kinematics. Using our custom joint sound recording system, we recorded the AEs from nine cadaver legs in four stages: at baseline, after a sham surgery, after a meniscus tear, and post-meniscectomy. We compare the resulting AEs using their
b
-values. We then compare joint anatomy/kinematics to the AEs using the X-ray reconstruction of moving morphology (XROMM) technique. After the meniscus tear the number and amplitude of the AE peaks greatly increased from baseline and sham (
b
-value = 1.33 ± 0.15;
p
< 0.05). The XROMM analysis showed a close correlation between the minimal inter-joint distances (0.251 ± 0.082 cm during extension, 0.265 ± .003 during flexion, at 145°) and a large increase in the AEs. This work provides key insight into the nature of joint AEs, and details a novel technique and analysis for recording and interpreting these biosignals.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31350620</pmid><doi>10.1007/s10439-019-02333-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4399-7579</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2020-01, Vol.48 (1), p.225-235 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6930345 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acoustic emission Acoustics Aged Biochemistry Biological and Medical Physics Biomarkers Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Cadaver Cadavers Classical Mechanics Correlation analysis Health Humans Joints (anatomy) Kinematics Knee Knee Joint Lower Extremity Meniscus Middle Aged Morphology Sound recording Surgery |
title | Acoustic Emissions as a Non-invasive Biomarker of the Structural Health of the Knee |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Emissions%20as%20a%20Non-invasive%20Biomarker%20of%20the%20Structural%20Health%20of%20the%20Knee&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Whittingslow,%20Daniel.%20C.&rft.date=2020-01-01&rft.volume=48&rft.issue=1&rft.spage=225&rft.epage=235&rft.pages=225-235&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-019-02333-x&rft_dat=%3Cproquest_pubme%3E2265792457%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264463219&rft_id=info:pmid/31350620&rfr_iscdi=true |