Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal disease and characterized by increased deposition of extracellular matrix proteins and scar formation in the lung, resulting from alveolar epithelial damage and accumulation of inflammatory cells. Evidence suggests that Caveolin-1 (Cav-1...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-12, Vol.9 (1), p.19643-11, Article 19643 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 19643 |
container_title | Scientific reports |
container_volume | 9 |
creator | Lin, Xin Barravecchia, Michael Matthew Kottmann, R. Sime, Patricia Dean, David A |
description | Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal disease and characterized by increased deposition of extracellular matrix proteins and scar formation in the lung, resulting from alveolar epithelial damage and accumulation of inflammatory cells. Evidence suggests that Caveolin-1 (Cav-1), a major component of caveolae which regulates cell signaling and endocytosis, is a potential target to treat fibrotic diseases, although the mechanisms and responsible cell types are unclear. We show that Cav-1 expression was downregulated both in alveolar epithelial type I cells in bleomycin-injured mouse lungs and in lung sections from IPF patients. Increased expression of IL-1β and caspase-1 has been observed in IPF patients, indicating inflammasome activation associated with IPF. Gene transfer of a plasmid expressing Cav-1 using transthoracic electroporation reduced infiltration of neutrophils and monocytes/macrophages and protected from subsequent bleomycin-induced pulmonary fibrosis. Overexpression of Cav-1 suppressed bleomycin- or silica-induced activation of caspase-1 and maturation of pro-IL-1β to secrete cleaved IL-1β both in mouse lungs and in primary type I cells. These results demonstrate that gene transfer of Cav-1 downregulates inflammasome activity and protects from subsequent bleomycin-mediated pulmonary fibrosis. This indicates a pivotal regulation of Cav-1 in inflammasome activity and suggests a novel therapeutic strategy for patients with IPF. |
doi_str_mv | 10.1038/s41598-019-55819-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330058354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-892cd2f7931e186cfda05479d31b6ab7a9bbdf9093041fff9c4116e70668954e3</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFaElCWn-QA5F0LMTfdmWLoWytE0g0EtyFrIs7SpYkivJC_73Vbr5vESH0cC8efNmHgAXGF1iRPlVZrgVvEFYNG3La1yPwClBrG0IJeTTm_wEnOf8gOpriWBYHIMTinlPkRCnwG_U3sTJhQbDrQkGlp1Jal6hCzs3uJJrYiflvcrRG6h0cXtVXAywRDinWIwu0Kbo4TCZ6FddmVwYF21GOC-Tj0GlFVo3pJhd_gI-WzVlc_70n4H7Xz_vNtfN7Z_fN5sft41mPSsNF0SPxPaCYoN5p-2oUMt6MVI8dGrolRiG0QokKGLYWis0w7gzPeo6Llpm6Bn4fuCdl8GbUZtQkprknJyvcmRUTr6vBLeT27iXnSCcYFoJvj0RpPh3MbnIh7ikUDVLQmm9JKctqyhyQOm6XU7GvkzASD66JA8uyeqS_O-SXGvT17faXlqePakAegDkWgpbk15nf0D7D2L1oTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330058354</pqid></control><display><type>article</type><title>Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lin, Xin ; Barravecchia, Michael ; Matthew Kottmann, R. ; Sime, Patricia ; Dean, David A</creator><creatorcontrib>Lin, Xin ; Barravecchia, Michael ; Matthew Kottmann, R. ; Sime, Patricia ; Dean, David A</creatorcontrib><description>Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal disease and characterized by increased deposition of extracellular matrix proteins and scar formation in the lung, resulting from alveolar epithelial damage and accumulation of inflammatory cells. Evidence suggests that Caveolin-1 (Cav-1), a major component of caveolae which regulates cell signaling and endocytosis, is a potential target to treat fibrotic diseases, although the mechanisms and responsible cell types are unclear. We show that Cav-1 expression was downregulated both in alveolar epithelial type I cells in bleomycin-injured mouse lungs and in lung sections from IPF patients. Increased expression of IL-1β and caspase-1 has been observed in IPF patients, indicating inflammasome activation associated with IPF. Gene transfer of a plasmid expressing Cav-1 using transthoracic electroporation reduced infiltration of neutrophils and monocytes/macrophages and protected from subsequent bleomycin-induced pulmonary fibrosis. Overexpression of Cav-1 suppressed bleomycin- or silica-induced activation of caspase-1 and maturation of pro-IL-1β to secrete cleaved IL-1β both in mouse lungs and in primary type I cells. These results demonstrate that gene transfer of Cav-1 downregulates inflammasome activity and protects from subsequent bleomycin-mediated pulmonary fibrosis. This indicates a pivotal regulation of Cav-1 in inflammasome activity and suggests a novel therapeutic strategy for patients with IPF.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-55819-y</identifier><identifier>PMID: 31873099</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 42 ; 42/44 ; 631/443/1784 ; 64 ; 64/60 ; 692/4017 ; 96 ; 96/106 ; Alveolar Epithelial Cells - metabolism ; Alveoli ; Animals ; Bleomycin ; Bleomycin - adverse effects ; Bleomycin - pharmacology ; Caspase-1 ; Caveolae ; Caveolin ; Caveolin 1 - biosynthesis ; Caveolin 1 - genetics ; Caveolin-1 ; Electroporation ; Endocytosis ; Extracellular matrix ; Fibrosis ; Gene therapy ; Gene Transfer Techniques ; Genetic Therapy ; Humanities and Social Sciences ; Humans ; Idiopathic Pulmonary Fibrosis - chemically induced ; Idiopathic Pulmonary Fibrosis - genetics ; Idiopathic Pulmonary Fibrosis - metabolism ; Idiopathic Pulmonary Fibrosis - therapy ; IL-1β ; Inflammasomes ; Inflammasomes - genetics ; Inflammasomes - metabolism ; Inflammation ; Interferon ; Leukocytes (neutrophilic) ; Lung diseases ; Lungs ; Macrophages ; Mice ; Monocytes ; multidisciplinary ; Pulmonary fibrosis ; Science ; Science (multidisciplinary) ; Silica</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.19643-11, Article 19643</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-892cd2f7931e186cfda05479d31b6ab7a9bbdf9093041fff9c4116e70668954e3</citedby><cites>FETCH-LOGICAL-c474t-892cd2f7931e186cfda05479d31b6ab7a9bbdf9093041fff9c4116e70668954e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928213/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928213/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Barravecchia, Michael</creatorcontrib><creatorcontrib>Matthew Kottmann, R.</creatorcontrib><creatorcontrib>Sime, Patricia</creatorcontrib><creatorcontrib>Dean, David A</creatorcontrib><title>Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal disease and characterized by increased deposition of extracellular matrix proteins and scar formation in the lung, resulting from alveolar epithelial damage and accumulation of inflammatory cells. Evidence suggests that Caveolin-1 (Cav-1), a major component of caveolae which regulates cell signaling and endocytosis, is a potential target to treat fibrotic diseases, although the mechanisms and responsible cell types are unclear. We show that Cav-1 expression was downregulated both in alveolar epithelial type I cells in bleomycin-injured mouse lungs and in lung sections from IPF patients. Increased expression of IL-1β and caspase-1 has been observed in IPF patients, indicating inflammasome activation associated with IPF. Gene transfer of a plasmid expressing Cav-1 using transthoracic electroporation reduced infiltration of neutrophils and monocytes/macrophages and protected from subsequent bleomycin-induced pulmonary fibrosis. Overexpression of Cav-1 suppressed bleomycin- or silica-induced activation of caspase-1 and maturation of pro-IL-1β to secrete cleaved IL-1β both in mouse lungs and in primary type I cells. These results demonstrate that gene transfer of Cav-1 downregulates inflammasome activity and protects from subsequent bleomycin-mediated pulmonary fibrosis. This indicates a pivotal regulation of Cav-1 in inflammasome activity and suggests a novel therapeutic strategy for patients with IPF.</description><subject>13/109</subject><subject>42</subject><subject>42/44</subject><subject>631/443/1784</subject><subject>64</subject><subject>64/60</subject><subject>692/4017</subject><subject>96</subject><subject>96/106</subject><subject>Alveolar Epithelial Cells - metabolism</subject><subject>Alveoli</subject><subject>Animals</subject><subject>Bleomycin</subject><subject>Bleomycin - adverse effects</subject><subject>Bleomycin - pharmacology</subject><subject>Caspase-1</subject><subject>Caveolae</subject><subject>Caveolin</subject><subject>Caveolin 1 - biosynthesis</subject><subject>Caveolin 1 - genetics</subject><subject>Caveolin-1</subject><subject>Electroporation</subject><subject>Endocytosis</subject><subject>Extracellular matrix</subject><subject>Fibrosis</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Idiopathic Pulmonary Fibrosis - chemically induced</subject><subject>Idiopathic Pulmonary Fibrosis - genetics</subject><subject>Idiopathic Pulmonary Fibrosis - metabolism</subject><subject>Idiopathic Pulmonary Fibrosis - therapy</subject><subject>IL-1β</subject><subject>Inflammasomes</subject><subject>Inflammasomes - genetics</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>Interferon</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Monocytes</subject><subject>multidisciplinary</subject><subject>Pulmonary fibrosis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silica</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1r3DAQFaElCWn-QA5F0LMTfdmWLoWytE0g0EtyFrIs7SpYkivJC_73Vbr5vESH0cC8efNmHgAXGF1iRPlVZrgVvEFYNG3La1yPwClBrG0IJeTTm_wEnOf8gOpriWBYHIMTinlPkRCnwG_U3sTJhQbDrQkGlp1Jal6hCzs3uJJrYiflvcrRG6h0cXtVXAywRDinWIwu0Kbo4TCZ6FddmVwYF21GOC-Tj0GlFVo3pJhd_gI-WzVlc_70n4H7Xz_vNtfN7Z_fN5sft41mPSsNF0SPxPaCYoN5p-2oUMt6MVI8dGrolRiG0QokKGLYWis0w7gzPeo6Llpm6Bn4fuCdl8GbUZtQkprknJyvcmRUTr6vBLeT27iXnSCcYFoJvj0RpPh3MbnIh7ikUDVLQmm9JKctqyhyQOm6XU7GvkzASD66JA8uyeqS_O-SXGvT17faXlqePakAegDkWgpbk15nf0D7D2L1oTQ</recordid><startdate>20191223</startdate><enddate>20191223</enddate><creator>Lin, Xin</creator><creator>Barravecchia, Michael</creator><creator>Matthew Kottmann, R.</creator><creator>Sime, Patricia</creator><creator>Dean, David A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20191223</creationdate><title>Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis</title><author>Lin, Xin ; Barravecchia, Michael ; Matthew Kottmann, R. ; Sime, Patricia ; Dean, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-892cd2f7931e186cfda05479d31b6ab7a9bbdf9093041fff9c4116e70668954e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/109</topic><topic>42</topic><topic>42/44</topic><topic>631/443/1784</topic><topic>64</topic><topic>64/60</topic><topic>692/4017</topic><topic>96</topic><topic>96/106</topic><topic>Alveolar Epithelial Cells - metabolism</topic><topic>Alveoli</topic><topic>Animals</topic><topic>Bleomycin</topic><topic>Bleomycin - adverse effects</topic><topic>Bleomycin - pharmacology</topic><topic>Caspase-1</topic><topic>Caveolae</topic><topic>Caveolin</topic><topic>Caveolin 1 - biosynthesis</topic><topic>Caveolin 1 - genetics</topic><topic>Caveolin-1</topic><topic>Electroporation</topic><topic>Endocytosis</topic><topic>Extracellular matrix</topic><topic>Fibrosis</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Idiopathic Pulmonary Fibrosis - chemically induced</topic><topic>Idiopathic Pulmonary Fibrosis - genetics</topic><topic>Idiopathic Pulmonary Fibrosis - metabolism</topic><topic>Idiopathic Pulmonary Fibrosis - therapy</topic><topic>IL-1β</topic><topic>Inflammasomes</topic><topic>Inflammasomes - genetics</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>Interferon</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Monocytes</topic><topic>multidisciplinary</topic><topic>Pulmonary fibrosis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Barravecchia, Michael</creatorcontrib><creatorcontrib>Matthew Kottmann, R.</creatorcontrib><creatorcontrib>Sime, Patricia</creatorcontrib><creatorcontrib>Dean, David A</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xin</au><au>Barravecchia, Michael</au><au>Matthew Kottmann, R.</au><au>Sime, Patricia</au><au>Dean, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-23</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>19643</spage><epage>11</epage><pages>19643-11</pages><artnum>19643</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal disease and characterized by increased deposition of extracellular matrix proteins and scar formation in the lung, resulting from alveolar epithelial damage and accumulation of inflammatory cells. Evidence suggests that Caveolin-1 (Cav-1), a major component of caveolae which regulates cell signaling and endocytosis, is a potential target to treat fibrotic diseases, although the mechanisms and responsible cell types are unclear. We show that Cav-1 expression was downregulated both in alveolar epithelial type I cells in bleomycin-injured mouse lungs and in lung sections from IPF patients. Increased expression of IL-1β and caspase-1 has been observed in IPF patients, indicating inflammasome activation associated with IPF. Gene transfer of a plasmid expressing Cav-1 using transthoracic electroporation reduced infiltration of neutrophils and monocytes/macrophages and protected from subsequent bleomycin-induced pulmonary fibrosis. Overexpression of Cav-1 suppressed bleomycin- or silica-induced activation of caspase-1 and maturation of pro-IL-1β to secrete cleaved IL-1β both in mouse lungs and in primary type I cells. These results demonstrate that gene transfer of Cav-1 downregulates inflammasome activity and protects from subsequent bleomycin-mediated pulmonary fibrosis. This indicates a pivotal regulation of Cav-1 in inflammasome activity and suggests a novel therapeutic strategy for patients with IPF.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31873099</pmid><doi>10.1038/s41598-019-55819-y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-12, Vol.9 (1), p.19643-11, Article 19643 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928213 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 13/109 42 42/44 631/443/1784 64 64/60 692/4017 96 96/106 Alveolar Epithelial Cells - metabolism Alveoli Animals Bleomycin Bleomycin - adverse effects Bleomycin - pharmacology Caspase-1 Caveolae Caveolin Caveolin 1 - biosynthesis Caveolin 1 - genetics Caveolin-1 Electroporation Endocytosis Extracellular matrix Fibrosis Gene therapy Gene Transfer Techniques Genetic Therapy Humanities and Social Sciences Humans Idiopathic Pulmonary Fibrosis - chemically induced Idiopathic Pulmonary Fibrosis - genetics Idiopathic Pulmonary Fibrosis - metabolism Idiopathic Pulmonary Fibrosis - therapy IL-1β Inflammasomes Inflammasomes - genetics Inflammasomes - metabolism Inflammation Interferon Leukocytes (neutrophilic) Lung diseases Lungs Macrophages Mice Monocytes multidisciplinary Pulmonary fibrosis Science Science (multidisciplinary) Silica |
title | Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caveolin-1%20gene%20therapy%20inhibits%20inflammasome%20activation%20to%20protect%20from%20bleomycin-induced%20pulmonary%20fibrosis&rft.jtitle=Scientific%20reports&rft.au=Lin,%20Xin&rft.date=2019-12-23&rft.volume=9&rft.issue=1&rft.spage=19643&rft.epage=11&rft.pages=19643-11&rft.artnum=19643&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-55819-y&rft_dat=%3Cproquest_pubme%3E2330058354%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330058354&rft_id=info:pmid/31873099&rfr_iscdi=true |