Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes

Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-12, Vol.9 (1), p.19681-10, Article 19681
Hauptverfasser: Shreevastava, Anamika, Bhalachandran, Saiprasanth, McGrath, Gavan S., Huber, Matthew, Rao, P. Suresh C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 19681
container_title Scientific reports
container_volume 9
creator Shreevastava, Anamika
Bhalachandran, Saiprasanth
McGrath, Gavan S.
Huber, Matthew
Rao, P. Suresh C.
description Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at various percentile-based thermal thresholds and refer to them collectively as intra-Urban Heat Islets . Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and intensity information about heterogeneous clusters into probability distributions that can be described using single scaling exponents (denoted by β , Λ s c o r e , and λ , respectively). This allows for a seamless comparison of the heat islet characteristics across cities at varying spatial scales and improves on the traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size distributions demonstrates the emergence of two classes where the dense cities follow a Pareto distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth trajectory to mitigate the UHI.
doi_str_mv 10.1038/s41598-019-56091-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330340309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5d04ecdf73ae1480658fee32ed30de40caf1af82cfce4ff1fefe245745d630e23</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERavSL8ABWeLCJeC_m4QDEqqAVqpEVdGzNXXGXVdOHOykW_j0OLulFA71xZbmN2_m-RHyirN3nMnmfVZct03FeFvpFWt5tXlGDgRTuhJSiOeP3vvkKOcbVo4WreLtC7IveVNLztsD8uscEnTxzlsI1Pcj2IlGR_OYYBP8cE39MCWoLtMVDPQEYaKnOeCUP9AL7Ga7ED2WUp6TA4t0wn7EBNOcMNPN2gekOKxh2JIhLlPwbkrYY35J9hyEjEf39yG5_PL5-_FJdfbt6-nxp7PKqlpNle6YQtu5WgJy1bCVbhyiFNhJ1qFiFhwH1wjrLCrnuEOHQula6W4lGQp5SD7udMf5qsfO4uIomDH5HtJPE8GbfyuDX5vreGtWrWiY4EXg7b1Aij9mzJPpfbYYAgwY52yElEwqJllb0Df_oTdxTkOxt6WYbmq-UGJH2RRzTugeluHMLOmaXbqmpGu26ZpNaXr92MZDy58sCyB3QAmv_Damv7OfkP0NAEe0Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330058719</pqid></control><display><type>article</type><title>Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes</title><source>PubMed Central (Open Access)</source><source>Nature Free</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><source>Directory of Open Access Journals (Open Access)</source><source>Springer Nature OA Free Journals</source><creator>Shreevastava, Anamika ; Bhalachandran, Saiprasanth ; McGrath, Gavan S. ; Huber, Matthew ; Rao, P. Suresh C.</creator><creatorcontrib>Shreevastava, Anamika ; Bhalachandran, Saiprasanth ; McGrath, Gavan S. ; Huber, Matthew ; Rao, P. Suresh C.</creatorcontrib><description>Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at various percentile-based thermal thresholds and refer to them collectively as intra-Urban Heat Islets . Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and intensity information about heterogeneous clusters into probability distributions that can be described using single scaling exponents (denoted by β , Λ s c o r e , and λ , respectively). This allows for a seamless comparison of the heat islet characteristics across cities at varying spatial scales and improves on the traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size distributions demonstrates the emergence of two classes where the dense cities follow a Pareto distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth trajectory to mitigate the UHI.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-56091-w</identifier><identifier>PMID: 31873119</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/35/823 ; 704/172/4081 ; 704/4111 ; Cities ; Extreme heat ; Health hazards ; Heat ; Humanities and Social Sciences ; Land surface temperature ; multidisciplinary ; Science ; Science (multidisciplinary) ; Urban areas ; Urban heat islands</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.19681-10, Article 19681</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5d04ecdf73ae1480658fee32ed30de40caf1af82cfce4ff1fefe245745d630e23</citedby><cites>FETCH-LOGICAL-c474t-5d04ecdf73ae1480658fee32ed30de40caf1af82cfce4ff1fefe245745d630e23</cites><orcidid>0000-0002-2771-9977 ; 0000-0002-6805-7869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928021/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928021/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,41122,42191,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shreevastava, Anamika</creatorcontrib><creatorcontrib>Bhalachandran, Saiprasanth</creatorcontrib><creatorcontrib>McGrath, Gavan S.</creatorcontrib><creatorcontrib>Huber, Matthew</creatorcontrib><creatorcontrib>Rao, P. Suresh C.</creatorcontrib><title>Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at various percentile-based thermal thresholds and refer to them collectively as intra-Urban Heat Islets . Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and intensity information about heterogeneous clusters into probability distributions that can be described using single scaling exponents (denoted by β , Λ s c o r e , and λ , respectively). This allows for a seamless comparison of the heat islet characteristics across cities at varying spatial scales and improves on the traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size distributions demonstrates the emergence of two classes where the dense cities follow a Pareto distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth trajectory to mitigate the UHI.</description><subject>704/106/35/823</subject><subject>704/172/4081</subject><subject>704/4111</subject><subject>Cities</subject><subject>Extreme heat</subject><subject>Health hazards</subject><subject>Heat</subject><subject>Humanities and Social Sciences</subject><subject>Land surface temperature</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Urban areas</subject><subject>Urban heat islands</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v1DAQxS1ERavSL8ABWeLCJeC_m4QDEqqAVqpEVdGzNXXGXVdOHOykW_j0OLulFA71xZbmN2_m-RHyirN3nMnmfVZct03FeFvpFWt5tXlGDgRTuhJSiOeP3vvkKOcbVo4WreLtC7IveVNLztsD8uscEnTxzlsI1Pcj2IlGR_OYYBP8cE39MCWoLtMVDPQEYaKnOeCUP9AL7Ga7ED2WUp6TA4t0wn7EBNOcMNPN2gekOKxh2JIhLlPwbkrYY35J9hyEjEf39yG5_PL5-_FJdfbt6-nxp7PKqlpNle6YQtu5WgJy1bCVbhyiFNhJ1qFiFhwH1wjrLCrnuEOHQula6W4lGQp5SD7udMf5qsfO4uIomDH5HtJPE8GbfyuDX5vreGtWrWiY4EXg7b1Aij9mzJPpfbYYAgwY52yElEwqJllb0Df_oTdxTkOxt6WYbmq-UGJH2RRzTugeluHMLOmaXbqmpGu26ZpNaXr92MZDy58sCyB3QAmv_Damv7OfkP0NAEe0Sw</recordid><startdate>20191223</startdate><enddate>20191223</enddate><creator>Shreevastava, Anamika</creator><creator>Bhalachandran, Saiprasanth</creator><creator>McGrath, Gavan S.</creator><creator>Huber, Matthew</creator><creator>Rao, P. Suresh C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2771-9977</orcidid><orcidid>https://orcid.org/0000-0002-6805-7869</orcidid></search><sort><creationdate>20191223</creationdate><title>Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes</title><author>Shreevastava, Anamika ; Bhalachandran, Saiprasanth ; McGrath, Gavan S. ; Huber, Matthew ; Rao, P. Suresh C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5d04ecdf73ae1480658fee32ed30de40caf1af82cfce4ff1fefe245745d630e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>704/106/35/823</topic><topic>704/172/4081</topic><topic>704/4111</topic><topic>Cities</topic><topic>Extreme heat</topic><topic>Health hazards</topic><topic>Heat</topic><topic>Humanities and Social Sciences</topic><topic>Land surface temperature</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Urban areas</topic><topic>Urban heat islands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shreevastava, Anamika</creatorcontrib><creatorcontrib>Bhalachandran, Saiprasanth</creatorcontrib><creatorcontrib>McGrath, Gavan S.</creatorcontrib><creatorcontrib>Huber, Matthew</creatorcontrib><creatorcontrib>Rao, P. Suresh C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shreevastava, Anamika</au><au>Bhalachandran, Saiprasanth</au><au>McGrath, Gavan S.</au><au>Huber, Matthew</au><au>Rao, P. Suresh C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-23</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>19681</spage><epage>10</epage><pages>19681-10</pages><artnum>19681</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at various percentile-based thermal thresholds and refer to them collectively as intra-Urban Heat Islets . Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and intensity information about heterogeneous clusters into probability distributions that can be described using single scaling exponents (denoted by β , Λ s c o r e , and λ , respectively). This allows for a seamless comparison of the heat islet characteristics across cities at varying spatial scales and improves on the traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size distributions demonstrates the emergence of two classes where the dense cities follow a Pareto distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth trajectory to mitigate the UHI.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31873119</pmid><doi>10.1038/s41598-019-56091-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2771-9977</orcidid><orcidid>https://orcid.org/0000-0002-6805-7869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-12, Vol.9 (1), p.19681-10, Article 19681
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928021
source PubMed Central (Open Access); Nature Free; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library; Directory of Open Access Journals (Open Access); Springer Nature OA Free Journals
subjects 704/106/35/823
704/172/4081
704/4111
Cities
Extreme heat
Health hazards
Heat
Humanities and Social Sciences
Land surface temperature
multidisciplinary
Science
Science (multidisciplinary)
Urban areas
Urban heat islands
title Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paradoxical%20impact%20of%20sprawling%20intra-Urban%20Heat%20Islets:%20Reducing%20mean%20surface%20temperatures%20while%20enhancing%20local%20extremes&rft.jtitle=Scientific%20reports&rft.au=Shreevastava,%20Anamika&rft.date=2019-12-23&rft.volume=9&rft.issue=1&rft.spage=19681&rft.epage=10&rft.pages=19681-10&rft.artnum=19681&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-56091-w&rft_dat=%3Cproquest_pubme%3E2330340309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330058719&rft_id=info:pmid/31873119&rfr_iscdi=true