Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes
Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-12, Vol.9 (1), p.19681-10, Article 19681 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 19681 |
container_title | Scientific reports |
container_volume | 9 |
creator | Shreevastava, Anamika Bhalachandran, Saiprasanth McGrath, Gavan S. Huber, Matthew Rao, P. Suresh C. |
description | Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at various percentile-based thermal thresholds and refer to them collectively as
intra-Urban Heat Islets
. Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and intensity information about heterogeneous clusters into probability distributions that can be described using single scaling exponents (denoted by
β
,
Λ
s
c
o
r
e
, and
λ
, respectively). This allows for a seamless comparison of the heat islet characteristics across cities at varying spatial scales and improves on the traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size distributions demonstrates the emergence of two classes where the dense cities follow a Pareto distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth trajectory to mitigate the UHI. |
doi_str_mv | 10.1038/s41598-019-56091-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330340309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5d04ecdf73ae1480658fee32ed30de40caf1af82cfce4ff1fefe245745d630e23</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERavSL8ABWeLCJeC_m4QDEqqAVqpEVdGzNXXGXVdOHOykW_j0OLulFA71xZbmN2_m-RHyirN3nMnmfVZct03FeFvpFWt5tXlGDgRTuhJSiOeP3vvkKOcbVo4WreLtC7IveVNLztsD8uscEnTxzlsI1Pcj2IlGR_OYYBP8cE39MCWoLtMVDPQEYaKnOeCUP9AL7Ga7ED2WUp6TA4t0wn7EBNOcMNPN2gekOKxh2JIhLlPwbkrYY35J9hyEjEf39yG5_PL5-_FJdfbt6-nxp7PKqlpNle6YQtu5WgJy1bCVbhyiFNhJ1qFiFhwH1wjrLCrnuEOHQula6W4lGQp5SD7udMf5qsfO4uIomDH5HtJPE8GbfyuDX5vreGtWrWiY4EXg7b1Aij9mzJPpfbYYAgwY52yElEwqJllb0Df_oTdxTkOxt6WYbmq-UGJH2RRzTugeluHMLOmaXbqmpGu26ZpNaXr92MZDy58sCyB3QAmv_Damv7OfkP0NAEe0Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330058719</pqid></control><display><type>article</type><title>Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes</title><source>PubMed Central (Open Access)</source><source>Nature Free</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><source>Directory of Open Access Journals (Open Access)</source><source>Springer Nature OA Free Journals</source><creator>Shreevastava, Anamika ; Bhalachandran, Saiprasanth ; McGrath, Gavan S. ; Huber, Matthew ; Rao, P. Suresh C.</creator><creatorcontrib>Shreevastava, Anamika ; Bhalachandran, Saiprasanth ; McGrath, Gavan S. ; Huber, Matthew ; Rao, P. Suresh C.</creatorcontrib><description>Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at various percentile-based thermal thresholds and refer to them collectively as
intra-Urban Heat Islets
. Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and intensity information about heterogeneous clusters into probability distributions that can be described using single scaling exponents (denoted by
β
,
Λ
s
c
o
r
e
, and
λ
, respectively). This allows for a seamless comparison of the heat islet characteristics across cities at varying spatial scales and improves on the traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size distributions demonstrates the emergence of two classes where the dense cities follow a Pareto distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth trajectory to mitigate the UHI.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-56091-w</identifier><identifier>PMID: 31873119</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/35/823 ; 704/172/4081 ; 704/4111 ; Cities ; Extreme heat ; Health hazards ; Heat ; Humanities and Social Sciences ; Land surface temperature ; multidisciplinary ; Science ; Science (multidisciplinary) ; Urban areas ; Urban heat islands</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.19681-10, Article 19681</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5d04ecdf73ae1480658fee32ed30de40caf1af82cfce4ff1fefe245745d630e23</citedby><cites>FETCH-LOGICAL-c474t-5d04ecdf73ae1480658fee32ed30de40caf1af82cfce4ff1fefe245745d630e23</cites><orcidid>0000-0002-2771-9977 ; 0000-0002-6805-7869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928021/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928021/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,41122,42191,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shreevastava, Anamika</creatorcontrib><creatorcontrib>Bhalachandran, Saiprasanth</creatorcontrib><creatorcontrib>McGrath, Gavan S.</creatorcontrib><creatorcontrib>Huber, Matthew</creatorcontrib><creatorcontrib>Rao, P. Suresh C.</creatorcontrib><title>Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at various percentile-based thermal thresholds and refer to them collectively as
intra-Urban Heat Islets
. Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and intensity information about heterogeneous clusters into probability distributions that can be described using single scaling exponents (denoted by
β
,
Λ
s
c
o
r
e
, and
λ
, respectively). This allows for a seamless comparison of the heat islet characteristics across cities at varying spatial scales and improves on the traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size distributions demonstrates the emergence of two classes where the dense cities follow a Pareto distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth trajectory to mitigate the UHI.</description><subject>704/106/35/823</subject><subject>704/172/4081</subject><subject>704/4111</subject><subject>Cities</subject><subject>Extreme heat</subject><subject>Health hazards</subject><subject>Heat</subject><subject>Humanities and Social Sciences</subject><subject>Land surface temperature</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Urban areas</subject><subject>Urban heat islands</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v1DAQxS1ERavSL8ABWeLCJeC_m4QDEqqAVqpEVdGzNXXGXVdOHOykW_j0OLulFA71xZbmN2_m-RHyirN3nMnmfVZct03FeFvpFWt5tXlGDgRTuhJSiOeP3vvkKOcbVo4WreLtC7IveVNLztsD8uscEnTxzlsI1Pcj2IlGR_OYYBP8cE39MCWoLtMVDPQEYaKnOeCUP9AL7Ga7ED2WUp6TA4t0wn7EBNOcMNPN2gekOKxh2JIhLlPwbkrYY35J9hyEjEf39yG5_PL5-_FJdfbt6-nxp7PKqlpNle6YQtu5WgJy1bCVbhyiFNhJ1qFiFhwH1wjrLCrnuEOHQula6W4lGQp5SD7udMf5qsfO4uIomDH5HtJPE8GbfyuDX5vreGtWrWiY4EXg7b1Aij9mzJPpfbYYAgwY52yElEwqJllb0Df_oTdxTkOxt6WYbmq-UGJH2RRzTugeluHMLOmaXbqmpGu26ZpNaXr92MZDy58sCyB3QAmv_Damv7OfkP0NAEe0Sw</recordid><startdate>20191223</startdate><enddate>20191223</enddate><creator>Shreevastava, Anamika</creator><creator>Bhalachandran, Saiprasanth</creator><creator>McGrath, Gavan S.</creator><creator>Huber, Matthew</creator><creator>Rao, P. Suresh C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2771-9977</orcidid><orcidid>https://orcid.org/0000-0002-6805-7869</orcidid></search><sort><creationdate>20191223</creationdate><title>Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes</title><author>Shreevastava, Anamika ; Bhalachandran, Saiprasanth ; McGrath, Gavan S. ; Huber, Matthew ; Rao, P. Suresh C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5d04ecdf73ae1480658fee32ed30de40caf1af82cfce4ff1fefe245745d630e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>704/106/35/823</topic><topic>704/172/4081</topic><topic>704/4111</topic><topic>Cities</topic><topic>Extreme heat</topic><topic>Health hazards</topic><topic>Heat</topic><topic>Humanities and Social Sciences</topic><topic>Land surface temperature</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Urban areas</topic><topic>Urban heat islands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shreevastava, Anamika</creatorcontrib><creatorcontrib>Bhalachandran, Saiprasanth</creatorcontrib><creatorcontrib>McGrath, Gavan S.</creatorcontrib><creatorcontrib>Huber, Matthew</creatorcontrib><creatorcontrib>Rao, P. Suresh C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shreevastava, Anamika</au><au>Bhalachandran, Saiprasanth</au><au>McGrath, Gavan S.</au><au>Huber, Matthew</au><au>Rao, P. Suresh C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-23</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>19681</spage><epage>10</epage><pages>19681-10</pages><artnum>19681</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at various percentile-based thermal thresholds and refer to them collectively as
intra-Urban Heat Islets
. Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and intensity information about heterogeneous clusters into probability distributions that can be described using single scaling exponents (denoted by
β
,
Λ
s
c
o
r
e
, and
λ
, respectively). This allows for a seamless comparison of the heat islet characteristics across cities at varying spatial scales and improves on the traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size distributions demonstrates the emergence of two classes where the dense cities follow a Pareto distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth trajectory to mitigate the UHI.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31873119</pmid><doi>10.1038/s41598-019-56091-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2771-9977</orcidid><orcidid>https://orcid.org/0000-0002-6805-7869</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-12, Vol.9 (1), p.19681-10, Article 19681 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928021 |
source | PubMed Central (Open Access); Nature Free; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library; Directory of Open Access Journals (Open Access); Springer Nature OA Free Journals |
subjects | 704/106/35/823 704/172/4081 704/4111 Cities Extreme heat Health hazards Heat Humanities and Social Sciences Land surface temperature multidisciplinary Science Science (multidisciplinary) Urban areas Urban heat islands |
title | Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paradoxical%20impact%20of%20sprawling%20intra-Urban%20Heat%20Islets:%20Reducing%20mean%20surface%20temperatures%20while%20enhancing%20local%20extremes&rft.jtitle=Scientific%20reports&rft.au=Shreevastava,%20Anamika&rft.date=2019-12-23&rft.volume=9&rft.issue=1&rft.spage=19681&rft.epage=10&rft.pages=19681-10&rft.artnum=19681&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-56091-w&rft_dat=%3Cproquest_pubme%3E2330340309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330058719&rft_id=info:pmid/31873119&rfr_iscdi=true |