Segmented Linear Regression Modelling of Time-Series of Binary Variables in Healthcare

Introduction. In healthcare, change is usually detected by statistical techniques comparing outcomes before and after an intervention. A common problem faced by researchers is distinguishing change due to secular trends from change due to an intervention. Interrupted time-series analysis has been sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2019, Vol.2019 (2019), p.1-7
Hauptverfasser: Valsamis, Epaminondas Markos, Chan, Gareth Ka-Wai, Husband, Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2019
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2019
creator Valsamis, Epaminondas Markos
Chan, Gareth Ka-Wai
Husband, Henry
description Introduction. In healthcare, change is usually detected by statistical techniques comparing outcomes before and after an intervention. A common problem faced by researchers is distinguishing change due to secular trends from change due to an intervention. Interrupted time-series analysis has been shown to be effective in describing trends in retrospective time-series and in detecting change, but methods are often biased towards the point of the intervention. Binary outcomes are typically modelled by logistic regression where the log-odds of the binary event is expressed as a function of covariates such as time, making model parameters difficult to interpret. The aim of this study was to present a technique that directly models the probability of binary events to describe change patterns using linear sections. Methods. We describe a modelling method that fits progressively more complex linear sections to the time-series of binary variables. Model fitting uses maximum likelihood optimisation and models are compared for goodness of fit using Akaike’s Information Criterion. The best model describes the most likely change scenario. We applied this modelling technique to evaluate hip fracture patient mortality rate for a total of 2777 patients over a 6-year period, before and after the introduction of a dedicated hip fracture unit (HFU) at a Level 1, Major Trauma Centre. Results. The proposed modelling technique revealed time-dependent trends that explained how the implementation of the HFU influenced mortality rate in patients sustaining proximal femoral fragility fractures. The technique allowed modelling of the entire time-series without bias to the point of intervention. Modelling the binary variable of interest directly, as opposed to a transformed variable, improved the interpretability of the results. Conclusion. The proposed segmented linear regression modelling technique using maximum likelihood estimation can be employed to effectively detect trends in time-series of binary variables in retrospective studies.
doi_str_mv 10.1155/2019/3478598
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6925779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331437569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b4cad6a56d47148e29372e925d9fad4c2ee501b1356b3b946ed74d157d80e3c3</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoft88yx4FXZtskk32ImhRK1QELeItZDezbWQ3W5NW8b83pbXqzVOSyY_3ZuYhdETwOSGc9zJMih5lQvJCbqBdIphMc0Hk5vqOX3bQXgivGHMiONlGO5RIyXMhd9HzE4xbcDMwydA60D55hLGHEGznkvvOQNNYN066OhnZFtIn8BbC4nllnfafybP2VpdNrFmXDEA3s0mlPRygrVo3AQ5X5z4a3VyP-oN0-HB7178cphVjdJaWrNIm1zw3TBAmISuoyKDIuClqbViVAXBMSkJ5XtKyYDkYwQzhwkgMtKL76GIpO52XLZgqDuJ1o6betrE51Wmr_v44O1Hj7l3l0UOIIgqcrAR89zaHMFOtDVUcWjvo5kFllBJGBc8X6NkSrXwXgod6bUOwWiShFkmoVRIRP_7d2hr-Xn0ETpfAxDqjP-w_5SAyUOsfmlDMKaNftK-bug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331437569</pqid></control><display><type>article</type><title>Segmented Linear Regression Modelling of Time-Series of Binary Variables in Healthcare</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Valsamis, Epaminondas Markos ; Chan, Gareth Ka-Wai ; Husband, Henry</creator><contributor>Tsipouras, Markos G.</contributor><creatorcontrib>Valsamis, Epaminondas Markos ; Chan, Gareth Ka-Wai ; Husband, Henry ; Tsipouras, Markos G.</creatorcontrib><description>Introduction. In healthcare, change is usually detected by statistical techniques comparing outcomes before and after an intervention. A common problem faced by researchers is distinguishing change due to secular trends from change due to an intervention. Interrupted time-series analysis has been shown to be effective in describing trends in retrospective time-series and in detecting change, but methods are often biased towards the point of the intervention. Binary outcomes are typically modelled by logistic regression where the log-odds of the binary event is expressed as a function of covariates such as time, making model parameters difficult to interpret. The aim of this study was to present a technique that directly models the probability of binary events to describe change patterns using linear sections. Methods. We describe a modelling method that fits progressively more complex linear sections to the time-series of binary variables. Model fitting uses maximum likelihood optimisation and models are compared for goodness of fit using Akaike’s Information Criterion. The best model describes the most likely change scenario. We applied this modelling technique to evaluate hip fracture patient mortality rate for a total of 2777 patients over a 6-year period, before and after the introduction of a dedicated hip fracture unit (HFU) at a Level 1, Major Trauma Centre. Results. The proposed modelling technique revealed time-dependent trends that explained how the implementation of the HFU influenced mortality rate in patients sustaining proximal femoral fragility fractures. The technique allowed modelling of the entire time-series without bias to the point of intervention. Modelling the binary variable of interest directly, as opposed to a transformed variable, improved the interpretability of the results. Conclusion. The proposed segmented linear regression modelling technique using maximum likelihood estimation can be employed to effectively detect trends in time-series of binary variables in retrospective studies.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2019/3478598</identifier><identifier>PMID: 31885678</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Computational Biology ; Computer Simulation ; Hip Fractures - mortality ; Humans ; Likelihood Functions ; Linear Models ; Models, Statistical ; Observational Studies as Topic - statistics &amp; numerical data ; Outcome Assessment, Health Care - statistics &amp; numerical data ; Probability ; Retrospective Studies ; Time Factors</subject><ispartof>Computational and mathematical methods in medicine, 2019, Vol.2019 (2019), p.1-7</ispartof><rights>Copyright © 2019 Epaminondas Markos Valsamis et al.</rights><rights>Copyright © 2019 Epaminondas Markos Valsamis et al. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b4cad6a56d47148e29372e925d9fad4c2ee501b1356b3b946ed74d157d80e3c3</citedby><cites>FETCH-LOGICAL-c443t-b4cad6a56d47148e29372e925d9fad4c2ee501b1356b3b946ed74d157d80e3c3</cites><orcidid>0000-0003-4154-9596 ; 0000-0002-5885-6229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925779/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925779/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4023,27922,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31885678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tsipouras, Markos G.</contributor><creatorcontrib>Valsamis, Epaminondas Markos</creatorcontrib><creatorcontrib>Chan, Gareth Ka-Wai</creatorcontrib><creatorcontrib>Husband, Henry</creatorcontrib><title>Segmented Linear Regression Modelling of Time-Series of Binary Variables in Healthcare</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Introduction. In healthcare, change is usually detected by statistical techniques comparing outcomes before and after an intervention. A common problem faced by researchers is distinguishing change due to secular trends from change due to an intervention. Interrupted time-series analysis has been shown to be effective in describing trends in retrospective time-series and in detecting change, but methods are often biased towards the point of the intervention. Binary outcomes are typically modelled by logistic regression where the log-odds of the binary event is expressed as a function of covariates such as time, making model parameters difficult to interpret. The aim of this study was to present a technique that directly models the probability of binary events to describe change patterns using linear sections. Methods. We describe a modelling method that fits progressively more complex linear sections to the time-series of binary variables. Model fitting uses maximum likelihood optimisation and models are compared for goodness of fit using Akaike’s Information Criterion. The best model describes the most likely change scenario. We applied this modelling technique to evaluate hip fracture patient mortality rate for a total of 2777 patients over a 6-year period, before and after the introduction of a dedicated hip fracture unit (HFU) at a Level 1, Major Trauma Centre. Results. The proposed modelling technique revealed time-dependent trends that explained how the implementation of the HFU influenced mortality rate in patients sustaining proximal femoral fragility fractures. The technique allowed modelling of the entire time-series without bias to the point of intervention. Modelling the binary variable of interest directly, as opposed to a transformed variable, improved the interpretability of the results. Conclusion. The proposed segmented linear regression modelling technique using maximum likelihood estimation can be employed to effectively detect trends in time-series of binary variables in retrospective studies.</description><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Hip Fractures - mortality</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Linear Models</subject><subject>Models, Statistical</subject><subject>Observational Studies as Topic - statistics &amp; numerical data</subject><subject>Outcome Assessment, Health Care - statistics &amp; numerical data</subject><subject>Probability</subject><subject>Retrospective Studies</subject><subject>Time Factors</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1LAzEQxYMoft88yx4FXZtskk32ImhRK1QELeItZDezbWQ3W5NW8b83pbXqzVOSyY_3ZuYhdETwOSGc9zJMih5lQvJCbqBdIphMc0Hk5vqOX3bQXgivGHMiONlGO5RIyXMhd9HzE4xbcDMwydA60D55hLGHEGznkvvOQNNYN066OhnZFtIn8BbC4nllnfafybP2VpdNrFmXDEA3s0mlPRygrVo3AQ5X5z4a3VyP-oN0-HB7178cphVjdJaWrNIm1zw3TBAmISuoyKDIuClqbViVAXBMSkJ5XtKyYDkYwQzhwkgMtKL76GIpO52XLZgqDuJ1o6betrE51Wmr_v44O1Hj7l3l0UOIIgqcrAR89zaHMFOtDVUcWjvo5kFllBJGBc8X6NkSrXwXgod6bUOwWiShFkmoVRIRP_7d2hr-Xn0ETpfAxDqjP-w_5SAyUOsfmlDMKaNftK-bug</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Valsamis, Epaminondas Markos</creator><creator>Chan, Gareth Ka-Wai</creator><creator>Husband, Henry</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4154-9596</orcidid><orcidid>https://orcid.org/0000-0002-5885-6229</orcidid></search><sort><creationdate>2019</creationdate><title>Segmented Linear Regression Modelling of Time-Series of Binary Variables in Healthcare</title><author>Valsamis, Epaminondas Markos ; Chan, Gareth Ka-Wai ; Husband, Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b4cad6a56d47148e29372e925d9fad4c2ee501b1356b3b946ed74d157d80e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Hip Fractures - mortality</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Linear Models</topic><topic>Models, Statistical</topic><topic>Observational Studies as Topic - statistics &amp; numerical data</topic><topic>Outcome Assessment, Health Care - statistics &amp; numerical data</topic><topic>Probability</topic><topic>Retrospective Studies</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valsamis, Epaminondas Markos</creatorcontrib><creatorcontrib>Chan, Gareth Ka-Wai</creatorcontrib><creatorcontrib>Husband, Henry</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valsamis, Epaminondas Markos</au><au>Chan, Gareth Ka-Wai</au><au>Husband, Henry</au><au>Tsipouras, Markos G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmented Linear Regression Modelling of Time-Series of Binary Variables in Healthcare</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Introduction. In healthcare, change is usually detected by statistical techniques comparing outcomes before and after an intervention. A common problem faced by researchers is distinguishing change due to secular trends from change due to an intervention. Interrupted time-series analysis has been shown to be effective in describing trends in retrospective time-series and in detecting change, but methods are often biased towards the point of the intervention. Binary outcomes are typically modelled by logistic regression where the log-odds of the binary event is expressed as a function of covariates such as time, making model parameters difficult to interpret. The aim of this study was to present a technique that directly models the probability of binary events to describe change patterns using linear sections. Methods. We describe a modelling method that fits progressively more complex linear sections to the time-series of binary variables. Model fitting uses maximum likelihood optimisation and models are compared for goodness of fit using Akaike’s Information Criterion. The best model describes the most likely change scenario. We applied this modelling technique to evaluate hip fracture patient mortality rate for a total of 2777 patients over a 6-year period, before and after the introduction of a dedicated hip fracture unit (HFU) at a Level 1, Major Trauma Centre. Results. The proposed modelling technique revealed time-dependent trends that explained how the implementation of the HFU influenced mortality rate in patients sustaining proximal femoral fragility fractures. The technique allowed modelling of the entire time-series without bias to the point of intervention. Modelling the binary variable of interest directly, as opposed to a transformed variable, improved the interpretability of the results. Conclusion. The proposed segmented linear regression modelling technique using maximum likelihood estimation can be employed to effectively detect trends in time-series of binary variables in retrospective studies.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>31885678</pmid><doi>10.1155/2019/3478598</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4154-9596</orcidid><orcidid>https://orcid.org/0000-0002-5885-6229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2019, Vol.2019 (2019), p.1-7
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6925779
source MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Computational Biology
Computer Simulation
Hip Fractures - mortality
Humans
Likelihood Functions
Linear Models
Models, Statistical
Observational Studies as Topic - statistics & numerical data
Outcome Assessment, Health Care - statistics & numerical data
Probability
Retrospective Studies
Time Factors
title Segmented Linear Regression Modelling of Time-Series of Binary Variables in Healthcare
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmented%20Linear%20Regression%20Modelling%20of%20Time-Series%20of%20Binary%20Variables%20in%20Healthcare&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Valsamis,%20Epaminondas%20Markos&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2019/3478598&rft_dat=%3Cproquest_pubme%3E2331437569%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331437569&rft_id=info:pmid/31885678&rfr_iscdi=true