Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases

Flavin-dependent ‘ene’-reductases (EREDs) are exquisite catalysts for effecting stereoselective reductions. Although these reactions typically proceed through a hydride transfer mechanism, we recently found that EREDs can also catalyse reductive dehalogenations and cyclizations via single electron t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2020-01, Vol.12 (1), p.71-75
Hauptverfasser: Black, Michael J., Biegasiewicz, Kyle F., Meichan, Andrew J., Oblinsky, Daniel G., Kudisch, Bryan, Scholes, Gregory D., Hyster, Todd K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 71
container_title Nature chemistry
container_volume 12
creator Black, Michael J.
Biegasiewicz, Kyle F.
Meichan, Andrew J.
Oblinsky, Daniel G.
Kudisch, Bryan
Scholes, Gregory D.
Hyster, Todd K.
description Flavin-dependent ‘ene’-reductases (EREDs) are exquisite catalysts for effecting stereoselective reductions. Although these reactions typically proceed through a hydride transfer mechanism, we recently found that EREDs can also catalyse reductive dehalogenations and cyclizations via single electron transfer mechanisms. Here, we demonstrate that these enzymes can catalyse redox-neutral radical cyclizations to produce enantioenriched oxindoles from α-haloamides. This transformation is a C–C bond-forming reaction currently unknown in nature and one for which there are no catalytic asymmetric examples. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where ground-state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the vinylogous α-amido radical formed after cyclization. This mechanistic manifold was previously unknown for this enzyme family, highlighting the versatility of EREDs in asymmetric synthesis. Flavin-dependent ‘ene’-reductases have now been shown to catalyse redox-neutral radical cyclizations of α-haloamides to form enantioenriched oxindoles. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where a ground state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the radical formed after cyclization.
doi_str_mv 10.1038/s41557-019-0370-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6925616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320874609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-f9a88a97471dc708a656a8012a910644e12f2178b6c81a5189b98873a8829afe3</originalsourceid><addsrcrecordid>eNp1kctu1TAQhi0EouXAA7BBEWzYGHyJbxukquImVWIDa8vHmbSuEudgO1XDqo8Br9cnwUcph4vEaizN9_8z4x-hp5S8ooTr17mlQihMqMGEK4LZPXRMlRC45a25f3hzcoQe5XxJiBScyofoiFNlGNfqGNmTvIwjlBR8k6CbrnGEuSQ3NMl1wdfqFz-Eb66EKTbeFTcsGbpmuzT94K5CxB3sIHYQS3N78x0i3N78wNVp9sVlyI_Rg94NGZ7c1Q368u7t59MP-OzT-4-nJ2fYC94W3BuntTOqVbTzimgnhXSaUOYMJbJtgbKeUaW30mvqBNVma7RWvKqYcT3wDXqz-u7m7Qidr_vUI-wuhdGlxU4u2L87MVzY8-nKSsOEpLIaPF8NplyCzT4U8Bd-ihF8sVSoVkpToZd3U9L0dYZc7Biyh2FwEaY5W8YZ0RUle_TFP-jlNKdY_2BPGc5aznSl6Er5NOWcoD9sTIndZ2zXjG3N2O4zruINevbnqQfFr1ArwFYg11Y8h_R79P9dfwLn6LQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329324328</pqid></control><display><type>article</type><title>Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Black, Michael J. ; Biegasiewicz, Kyle F. ; Meichan, Andrew J. ; Oblinsky, Daniel G. ; Kudisch, Bryan ; Scholes, Gregory D. ; Hyster, Todd K.</creator><creatorcontrib>Black, Michael J. ; Biegasiewicz, Kyle F. ; Meichan, Andrew J. ; Oblinsky, Daniel G. ; Kudisch, Bryan ; Scholes, Gregory D. ; Hyster, Todd K. ; Princeton Univ., NJ (United States) ; Energy Frontier Research Centers (EFRC) (United States). Bioinspired Light-Escalated Chemistry (BioLEC)</creatorcontrib><description>Flavin-dependent ‘ene’-reductases (EREDs) are exquisite catalysts for effecting stereoselective reductions. Although these reactions typically proceed through a hydride transfer mechanism, we recently found that EREDs can also catalyse reductive dehalogenations and cyclizations via single electron transfer mechanisms. Here, we demonstrate that these enzymes can catalyse redox-neutral radical cyclizations to produce enantioenriched oxindoles from α-haloamides. This transformation is a C–C bond-forming reaction currently unknown in nature and one for which there are no catalytic asymmetric examples. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where ground-state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the vinylogous α-amido radical formed after cyclization. This mechanistic manifold was previously unknown for this enzyme family, highlighting the versatility of EREDs in asymmetric synthesis. Flavin-dependent ‘ene’-reductases have now been shown to catalyse redox-neutral radical cyclizations of α-haloamides to form enantioenriched oxindoles. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where a ground state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the radical formed after cyclization.</description><identifier>ISSN: 1755-4330</identifier><identifier>ISSN: 1755-4349</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-019-0370-2</identifier><identifier>PMID: 31792387</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/933 ; 639/638/403/934 ; 639/638/77 ; 639/638/77/603 ; Amides - chemistry ; Analytical Chemistry ; Asymmetric synthesis ; Asymmetry ; Biocatalysis ; Biochemistry ; Catalysts ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Covalent bonds ; Cyclization ; Electron transfer ; Flavin ; Flavin Mononucleotide - chemistry ; Free Radicals - chemistry ; Inorganic Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Organic Chemistry ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Oxindoles - chemical synthesis ; Physical Chemistry ; Quinones ; Reductases ; Single electrons ; Stereoisomerism ; Stereoselectivity ; Substrates</subject><ispartof>Nature chemistry, 2020-01, Vol.12 (1), p.71-75</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-f9a88a97471dc708a656a8012a910644e12f2178b6c81a5189b98873a8829afe3</citedby><cites>FETCH-LOGICAL-c534t-f9a88a97471dc708a656a8012a910644e12f2178b6c81a5189b98873a8829afe3</cites><orcidid>0000-0001-7460-8260 ; 0000-0003-3560-355X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-019-0370-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-019-0370-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31792387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1574669$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Black, Michael J.</creatorcontrib><creatorcontrib>Biegasiewicz, Kyle F.</creatorcontrib><creatorcontrib>Meichan, Andrew J.</creatorcontrib><creatorcontrib>Oblinsky, Daniel G.</creatorcontrib><creatorcontrib>Kudisch, Bryan</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Hyster, Todd K.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Bioinspired Light-Escalated Chemistry (BioLEC)</creatorcontrib><title>Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Flavin-dependent ‘ene’-reductases (EREDs) are exquisite catalysts for effecting stereoselective reductions. Although these reactions typically proceed through a hydride transfer mechanism, we recently found that EREDs can also catalyse reductive dehalogenations and cyclizations via single electron transfer mechanisms. Here, we demonstrate that these enzymes can catalyse redox-neutral radical cyclizations to produce enantioenriched oxindoles from α-haloamides. This transformation is a C–C bond-forming reaction currently unknown in nature and one for which there are no catalytic asymmetric examples. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where ground-state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the vinylogous α-amido radical formed after cyclization. This mechanistic manifold was previously unknown for this enzyme family, highlighting the versatility of EREDs in asymmetric synthesis. Flavin-dependent ‘ene’-reductases have now been shown to catalyse redox-neutral radical cyclizations of α-haloamides to form enantioenriched oxindoles. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where a ground state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the radical formed after cyclization.</description><subject>639/638/403/933</subject><subject>639/638/403/934</subject><subject>639/638/77</subject><subject>639/638/77/603</subject><subject>Amides - chemistry</subject><subject>Analytical Chemistry</subject><subject>Asymmetric synthesis</subject><subject>Asymmetry</subject><subject>Biocatalysis</subject><subject>Biochemistry</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Covalent bonds</subject><subject>Cyclization</subject><subject>Electron transfer</subject><subject>Flavin</subject><subject>Flavin Mononucleotide - chemistry</subject><subject>Free Radicals - chemistry</subject><subject>Inorganic Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Organic Chemistry</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxindoles - chemical synthesis</subject><subject>Physical Chemistry</subject><subject>Quinones</subject><subject>Reductases</subject><subject>Single electrons</subject><subject>Stereoisomerism</subject><subject>Stereoselectivity</subject><subject>Substrates</subject><issn>1755-4330</issn><issn>1755-4349</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctu1TAQhi0EouXAA7BBEWzYGHyJbxukquImVWIDa8vHmbSuEudgO1XDqo8Br9cnwUcph4vEaizN9_8z4x-hp5S8ooTr17mlQihMqMGEK4LZPXRMlRC45a25f3hzcoQe5XxJiBScyofoiFNlGNfqGNmTvIwjlBR8k6CbrnGEuSQ3NMl1wdfqFz-Eb66EKTbeFTcsGbpmuzT94K5CxB3sIHYQS3N78x0i3N78wNVp9sVlyI_Rg94NGZ7c1Q368u7t59MP-OzT-4-nJ2fYC94W3BuntTOqVbTzimgnhXSaUOYMJbJtgbKeUaW30mvqBNVma7RWvKqYcT3wDXqz-u7m7Qidr_vUI-wuhdGlxU4u2L87MVzY8-nKSsOEpLIaPF8NplyCzT4U8Bd-ihF8sVSoVkpToZd3U9L0dYZc7Biyh2FwEaY5W8YZ0RUle_TFP-jlNKdY_2BPGc5aznSl6Er5NOWcoD9sTIndZ2zXjG3N2O4zruINevbnqQfFr1ArwFYg11Y8h_R79P9dfwLn6LQQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Black, Michael J.</creator><creator>Biegasiewicz, Kyle F.</creator><creator>Meichan, Andrew J.</creator><creator>Oblinsky, Daniel G.</creator><creator>Kudisch, Bryan</creator><creator>Scholes, Gregory D.</creator><creator>Hyster, Todd K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Research</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7460-8260</orcidid><orcidid>https://orcid.org/0000-0003-3560-355X</orcidid></search><sort><creationdate>20200101</creationdate><title>Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases</title><author>Black, Michael J. ; Biegasiewicz, Kyle F. ; Meichan, Andrew J. ; Oblinsky, Daniel G. ; Kudisch, Bryan ; Scholes, Gregory D. ; Hyster, Todd K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-f9a88a97471dc708a656a8012a910644e12f2178b6c81a5189b98873a8829afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/638/403/933</topic><topic>639/638/403/934</topic><topic>639/638/77</topic><topic>639/638/77/603</topic><topic>Amides - chemistry</topic><topic>Analytical Chemistry</topic><topic>Asymmetric synthesis</topic><topic>Asymmetry</topic><topic>Biocatalysis</topic><topic>Biochemistry</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Covalent bonds</topic><topic>Cyclization</topic><topic>Electron transfer</topic><topic>Flavin</topic><topic>Flavin Mononucleotide - chemistry</topic><topic>Free Radicals - chemistry</topic><topic>Inorganic Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Organic Chemistry</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxindoles - chemical synthesis</topic><topic>Physical Chemistry</topic><topic>Quinones</topic><topic>Reductases</topic><topic>Single electrons</topic><topic>Stereoisomerism</topic><topic>Stereoselectivity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Black, Michael J.</creatorcontrib><creatorcontrib>Biegasiewicz, Kyle F.</creatorcontrib><creatorcontrib>Meichan, Andrew J.</creatorcontrib><creatorcontrib>Oblinsky, Daniel G.</creatorcontrib><creatorcontrib>Kudisch, Bryan</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Hyster, Todd K.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Bioinspired Light-Escalated Chemistry (BioLEC)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Black, Michael J.</au><au>Biegasiewicz, Kyle F.</au><au>Meichan, Andrew J.</au><au>Oblinsky, Daniel G.</au><au>Kudisch, Bryan</au><au>Scholes, Gregory D.</au><au>Hyster, Todd K.</au><aucorp>Princeton Univ., NJ (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Bioinspired Light-Escalated Chemistry (BioLEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>71</spage><epage>75</epage><pages>71-75</pages><issn>1755-4330</issn><issn>1755-4349</issn><eissn>1755-4349</eissn><abstract>Flavin-dependent ‘ene’-reductases (EREDs) are exquisite catalysts for effecting stereoselective reductions. Although these reactions typically proceed through a hydride transfer mechanism, we recently found that EREDs can also catalyse reductive dehalogenations and cyclizations via single electron transfer mechanisms. Here, we demonstrate that these enzymes can catalyse redox-neutral radical cyclizations to produce enantioenriched oxindoles from α-haloamides. This transformation is a C–C bond-forming reaction currently unknown in nature and one for which there are no catalytic asymmetric examples. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where ground-state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the vinylogous α-amido radical formed after cyclization. This mechanistic manifold was previously unknown for this enzyme family, highlighting the versatility of EREDs in asymmetric synthesis. Flavin-dependent ‘ene’-reductases have now been shown to catalyse redox-neutral radical cyclizations of α-haloamides to form enantioenriched oxindoles. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where a ground state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the radical formed after cyclization.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31792387</pmid><doi>10.1038/s41557-019-0370-2</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7460-8260</orcidid><orcidid>https://orcid.org/0000-0003-3560-355X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2020-01, Vol.12 (1), p.71-75
issn 1755-4330
1755-4349
1755-4349
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6925616
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/638/403/933
639/638/403/934
639/638/77
639/638/77/603
Amides - chemistry
Analytical Chemistry
Asymmetric synthesis
Asymmetry
Biocatalysis
Biochemistry
Catalysts
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Covalent bonds
Cyclization
Electron transfer
Flavin
Flavin Mononucleotide - chemistry
Free Radicals - chemistry
Inorganic Chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Organic Chemistry
Oxidation-Reduction
Oxidoreductases - chemistry
Oxindoles - chemical synthesis
Physical Chemistry
Quinones
Reductases
Single electrons
Stereoisomerism
Stereoselectivity
Substrates
title Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20redox-neutral%20radical%20cyclization%20catalysed%20by%20flavin-dependent%20%E2%80%98ene%E2%80%99-reductases&rft.jtitle=Nature%20chemistry&rft.au=Black,%20Michael%20J.&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2020-01-01&rft.volume=12&rft.issue=1&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-019-0370-2&rft_dat=%3Cproquest_pubme%3E2320874609%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329324328&rft_id=info:pmid/31792387&rfr_iscdi=true