Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis

The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified hos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2019-10, Vol.179 (2), p.459-469.e9
Hauptverfasser: Yehl, Kevin, Lemire, Sébastien, Yang, Andrew C., Ando, Hiroki, Mimee, Mark, Torres, Marcelo Der Torossian, de la Fuente-Nunez, Cesar, Lu, Timothy K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469.e9
container_issue 2
container_start_page 459
container_title Cell
container_volume 179
creator Yehl, Kevin
Lemire, Sébastien
Yang, Andrew C.
Ando, Hiroki
Mimee, Mark
Torres, Marcelo Der Torossian
de la Fuente-Nunez, Cesar
Lu, Timothy K.
description The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic “phagebodies.” We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications. [Display omitted] •Vastly diverse phagebody libraries containing 107 different members were created•Structure-informed engineering of viral tail fibers generated host-range alterations•Bacterial resistance to phagebodies was not observed across long timescales•Select phagebodies limit bacterial growth in a mouse wound infection model Bacteriophage libraries containing millions of variants of phage tail fiber motifs on a common structural scaffold give rise to infectious phages with expanded or altered host ranges, which may be useful for phage therapy efforts.
doi_str_mv 10.1016/j.cell.2019.09.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6924272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867419310220</els_id><sourcerecordid>2301443714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-7e8358e78dfaec28be4bbe9e155d6c82062ee261c817ebba42412e30786b038e3</originalsourceid><addsrcrecordid>eNqNkUFr3DAQhUVpaLZp_0APxcdevNXIkiVDCLQhaQoJLWl6FrI869XilTeSHOi_r8xuQ3IJhQEJzfcemnmEfAC6BAr1583S4jAsGYVmSXOBeEUWQBtZcpDsNVlQ2rBS1ZIfk7cxbiilSgjxhhxXIJSgqlqQ1YXvnUcMzvfFz7XpsbgaYypvjc9X47vi17TbBYxxBr4amzJqhuIWo4vJeItFWodx6tcH9Z1xQ3HpWgzFzZTyi5_Jd-RoZYaI7w_nCfl9eXF3flVe__j2_fzLdWm5UqmUqCqhUKpuZdAy1SJvW2wQhOhqqxitGSKrwSqQ2LaGMw4MKypV3dJKYXVCzva-u6ndYmfRp2AGvQtua8IfPRqnn3e8W-t-fNB1wziTLBt8OhiE8X7CmPTWxXnNxuM4Rc0qyUEBb9R_oBQ4ryTwjLI9asMYY8DV44-A6jlLvdGzUs9ZapoLRBZ9fDrLo-RfeBk43QOYN_rgMOhoHeZIOhfQJt2N7iX_v8-ascA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301443714</pqid></control><display><type>article</type><title>Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yehl, Kevin ; Lemire, Sébastien ; Yang, Andrew C. ; Ando, Hiroki ; Mimee, Mark ; Torres, Marcelo Der Torossian ; de la Fuente-Nunez, Cesar ; Lu, Timothy K.</creator><creatorcontrib>Yehl, Kevin ; Lemire, Sébastien ; Yang, Andrew C. ; Ando, Hiroki ; Mimee, Mark ; Torres, Marcelo Der Torossian ; de la Fuente-Nunez, Cesar ; Lu, Timothy K.</creatorcontrib><description>The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic “phagebodies.” We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications. [Display omitted] •Vastly diverse phagebody libraries containing 107 different members were created•Structure-informed engineering of viral tail fibers generated host-range alterations•Bacterial resistance to phagebodies was not observed across long timescales•Select phagebodies limit bacterial growth in a mouse wound infection model Bacteriophage libraries containing millions of variants of phage tail fiber motifs on a common structural scaffold give rise to infectious phages with expanded or altered host ranges, which may be useful for phage therapy efforts.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2019.09.015</identifier><identifier>PMID: 31585083</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>animal models ; anti-infective agents ; antibiotic resistance ; antibody ; antibody specificity ; antimicrobial ; bacterial growth ; bacteriophage ; bacteriophages ; evolution ; functional diversity ; host range ; phage ; resistance ; site-directed mutagenesis ; synthetic biology ; tail fiber ; virus</subject><ispartof>Cell, 2019-10, Vol.179 (2), p.459-469.e9</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-7e8358e78dfaec28be4bbe9e155d6c82062ee261c817ebba42412e30786b038e3</citedby><cites>FETCH-LOGICAL-c488t-7e8358e78dfaec28be4bbe9e155d6c82062ee261c817ebba42412e30786b038e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867419310220$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31585083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yehl, Kevin</creatorcontrib><creatorcontrib>Lemire, Sébastien</creatorcontrib><creatorcontrib>Yang, Andrew C.</creatorcontrib><creatorcontrib>Ando, Hiroki</creatorcontrib><creatorcontrib>Mimee, Mark</creatorcontrib><creatorcontrib>Torres, Marcelo Der Torossian</creatorcontrib><creatorcontrib>de la Fuente-Nunez, Cesar</creatorcontrib><creatorcontrib>Lu, Timothy K.</creatorcontrib><title>Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis</title><title>Cell</title><addtitle>Cell</addtitle><description>The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic “phagebodies.” We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications. [Display omitted] •Vastly diverse phagebody libraries containing 107 different members were created•Structure-informed engineering of viral tail fibers generated host-range alterations•Bacterial resistance to phagebodies was not observed across long timescales•Select phagebodies limit bacterial growth in a mouse wound infection model Bacteriophage libraries containing millions of variants of phage tail fiber motifs on a common structural scaffold give rise to infectious phages with expanded or altered host ranges, which may be useful for phage therapy efforts.</description><subject>animal models</subject><subject>anti-infective agents</subject><subject>antibiotic resistance</subject><subject>antibody</subject><subject>antibody specificity</subject><subject>antimicrobial</subject><subject>bacterial growth</subject><subject>bacteriophage</subject><subject>bacteriophages</subject><subject>evolution</subject><subject>functional diversity</subject><subject>host range</subject><subject>phage</subject><subject>resistance</subject><subject>site-directed mutagenesis</subject><subject>synthetic biology</subject><subject>tail fiber</subject><subject>virus</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkUFr3DAQhUVpaLZp_0APxcdevNXIkiVDCLQhaQoJLWl6FrI869XilTeSHOi_r8xuQ3IJhQEJzfcemnmEfAC6BAr1583S4jAsGYVmSXOBeEUWQBtZcpDsNVlQ2rBS1ZIfk7cxbiilSgjxhhxXIJSgqlqQ1YXvnUcMzvfFz7XpsbgaYypvjc9X47vi17TbBYxxBr4amzJqhuIWo4vJeItFWodx6tcH9Z1xQ3HpWgzFzZTyi5_Jd-RoZYaI7w_nCfl9eXF3flVe__j2_fzLdWm5UqmUqCqhUKpuZdAy1SJvW2wQhOhqqxitGSKrwSqQ2LaGMw4MKypV3dJKYXVCzva-u6ndYmfRp2AGvQtua8IfPRqnn3e8W-t-fNB1wziTLBt8OhiE8X7CmPTWxXnNxuM4Rc0qyUEBb9R_oBQ4ryTwjLI9asMYY8DV44-A6jlLvdGzUs9ZapoLRBZ9fDrLo-RfeBk43QOYN_rgMOhoHeZIOhfQJt2N7iX_v8-ascA</recordid><startdate>20191003</startdate><enddate>20191003</enddate><creator>Yehl, Kevin</creator><creator>Lemire, Sébastien</creator><creator>Yang, Andrew C.</creator><creator>Ando, Hiroki</creator><creator>Mimee, Mark</creator><creator>Torres, Marcelo Der Torossian</creator><creator>de la Fuente-Nunez, Cesar</creator><creator>Lu, Timothy K.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20191003</creationdate><title>Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis</title><author>Yehl, Kevin ; Lemire, Sébastien ; Yang, Andrew C. ; Ando, Hiroki ; Mimee, Mark ; Torres, Marcelo Der Torossian ; de la Fuente-Nunez, Cesar ; Lu, Timothy K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-7e8358e78dfaec28be4bbe9e155d6c82062ee261c817ebba42412e30786b038e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>animal models</topic><topic>anti-infective agents</topic><topic>antibiotic resistance</topic><topic>antibody</topic><topic>antibody specificity</topic><topic>antimicrobial</topic><topic>bacterial growth</topic><topic>bacteriophage</topic><topic>bacteriophages</topic><topic>evolution</topic><topic>functional diversity</topic><topic>host range</topic><topic>phage</topic><topic>resistance</topic><topic>site-directed mutagenesis</topic><topic>synthetic biology</topic><topic>tail fiber</topic><topic>virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yehl, Kevin</creatorcontrib><creatorcontrib>Lemire, Sébastien</creatorcontrib><creatorcontrib>Yang, Andrew C.</creatorcontrib><creatorcontrib>Ando, Hiroki</creatorcontrib><creatorcontrib>Mimee, Mark</creatorcontrib><creatorcontrib>Torres, Marcelo Der Torossian</creatorcontrib><creatorcontrib>de la Fuente-Nunez, Cesar</creatorcontrib><creatorcontrib>Lu, Timothy K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yehl, Kevin</au><au>Lemire, Sébastien</au><au>Yang, Andrew C.</au><au>Ando, Hiroki</au><au>Mimee, Mark</au><au>Torres, Marcelo Der Torossian</au><au>de la Fuente-Nunez, Cesar</au><au>Lu, Timothy K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2019-10-03</date><risdate>2019</risdate><volume>179</volume><issue>2</issue><spage>459</spage><epage>469.e9</epage><pages>459-469.e9</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic “phagebodies.” We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications. [Display omitted] •Vastly diverse phagebody libraries containing 107 different members were created•Structure-informed engineering of viral tail fibers generated host-range alterations•Bacterial resistance to phagebodies was not observed across long timescales•Select phagebodies limit bacterial growth in a mouse wound infection model Bacteriophage libraries containing millions of variants of phage tail fiber motifs on a common structural scaffold give rise to infectious phages with expanded or altered host ranges, which may be useful for phage therapy efforts.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31585083</pmid><doi>10.1016/j.cell.2019.09.015</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2019-10, Vol.179 (2), p.459-469.e9
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6924272
source Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects animal models
anti-infective agents
antibiotic resistance
antibody
antibody specificity
antimicrobial
bacterial growth
bacteriophage
bacteriophages
evolution
functional diversity
host range
phage
resistance
site-directed mutagenesis
synthetic biology
tail fiber
virus
title Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Phage%20Host-Range%20and%20Suppressing%20Bacterial%20Resistance%20through%20Phage%20Tail%20Fiber%20Mutagenesis&rft.jtitle=Cell&rft.au=Yehl,%20Kevin&rft.date=2019-10-03&rft.volume=179&rft.issue=2&rft.spage=459&rft.epage=469.e9&rft.pages=459-469.e9&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2019.09.015&rft_dat=%3Cproquest_pubme%3E2301443714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301443714&rft_id=info:pmid/31585083&rft_els_id=S0092867419310220&rfr_iscdi=true