Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis
The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified hos...
Gespeichert in:
Veröffentlicht in: | Cell 2019-10, Vol.179 (2), p.459-469.e9 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469.e9 |
---|---|
container_issue | 2 |
container_start_page | 459 |
container_title | Cell |
container_volume | 179 |
creator | Yehl, Kevin Lemire, Sébastien Yang, Andrew C. Ando, Hiroki Mimee, Mark Torres, Marcelo Der Torossian de la Fuente-Nunez, Cesar Lu, Timothy K. |
description | The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic “phagebodies.” We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.
[Display omitted]
•Vastly diverse phagebody libraries containing 107 different members were created•Structure-informed engineering of viral tail fibers generated host-range alterations•Bacterial resistance to phagebodies was not observed across long timescales•Select phagebodies limit bacterial growth in a mouse wound infection model
Bacteriophage libraries containing millions of variants of phage tail fiber motifs on a common structural scaffold give rise to infectious phages with expanded or altered host ranges, which may be useful for phage therapy efforts. |
doi_str_mv | 10.1016/j.cell.2019.09.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6924272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867419310220</els_id><sourcerecordid>2301443714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-7e8358e78dfaec28be4bbe9e155d6c82062ee261c817ebba42412e30786b038e3</originalsourceid><addsrcrecordid>eNqNkUFr3DAQhUVpaLZp_0APxcdevNXIkiVDCLQhaQoJLWl6FrI869XilTeSHOi_r8xuQ3IJhQEJzfcemnmEfAC6BAr1583S4jAsGYVmSXOBeEUWQBtZcpDsNVlQ2rBS1ZIfk7cxbiilSgjxhhxXIJSgqlqQ1YXvnUcMzvfFz7XpsbgaYypvjc9X47vi17TbBYxxBr4amzJqhuIWo4vJeItFWodx6tcH9Z1xQ3HpWgzFzZTyi5_Jd-RoZYaI7w_nCfl9eXF3flVe__j2_fzLdWm5UqmUqCqhUKpuZdAy1SJvW2wQhOhqqxitGSKrwSqQ2LaGMw4MKypV3dJKYXVCzva-u6ndYmfRp2AGvQtua8IfPRqnn3e8W-t-fNB1wziTLBt8OhiE8X7CmPTWxXnNxuM4Rc0qyUEBb9R_oBQ4ryTwjLI9asMYY8DV44-A6jlLvdGzUs9ZapoLRBZ9fDrLo-RfeBk43QOYN_rgMOhoHeZIOhfQJt2N7iX_v8-ascA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301443714</pqid></control><display><type>article</type><title>Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yehl, Kevin ; Lemire, Sébastien ; Yang, Andrew C. ; Ando, Hiroki ; Mimee, Mark ; Torres, Marcelo Der Torossian ; de la Fuente-Nunez, Cesar ; Lu, Timothy K.</creator><creatorcontrib>Yehl, Kevin ; Lemire, Sébastien ; Yang, Andrew C. ; Ando, Hiroki ; Mimee, Mark ; Torres, Marcelo Der Torossian ; de la Fuente-Nunez, Cesar ; Lu, Timothy K.</creatorcontrib><description>The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic “phagebodies.” We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.
[Display omitted]
•Vastly diverse phagebody libraries containing 107 different members were created•Structure-informed engineering of viral tail fibers generated host-range alterations•Bacterial resistance to phagebodies was not observed across long timescales•Select phagebodies limit bacterial growth in a mouse wound infection model
Bacteriophage libraries containing millions of variants of phage tail fiber motifs on a common structural scaffold give rise to infectious phages with expanded or altered host ranges, which may be useful for phage therapy efforts.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2019.09.015</identifier><identifier>PMID: 31585083</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>animal models ; anti-infective agents ; antibiotic resistance ; antibody ; antibody specificity ; antimicrobial ; bacterial growth ; bacteriophage ; bacteriophages ; evolution ; functional diversity ; host range ; phage ; resistance ; site-directed mutagenesis ; synthetic biology ; tail fiber ; virus</subject><ispartof>Cell, 2019-10, Vol.179 (2), p.459-469.e9</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-7e8358e78dfaec28be4bbe9e155d6c82062ee261c817ebba42412e30786b038e3</citedby><cites>FETCH-LOGICAL-c488t-7e8358e78dfaec28be4bbe9e155d6c82062ee261c817ebba42412e30786b038e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867419310220$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31585083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yehl, Kevin</creatorcontrib><creatorcontrib>Lemire, Sébastien</creatorcontrib><creatorcontrib>Yang, Andrew C.</creatorcontrib><creatorcontrib>Ando, Hiroki</creatorcontrib><creatorcontrib>Mimee, Mark</creatorcontrib><creatorcontrib>Torres, Marcelo Der Torossian</creatorcontrib><creatorcontrib>de la Fuente-Nunez, Cesar</creatorcontrib><creatorcontrib>Lu, Timothy K.</creatorcontrib><title>Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis</title><title>Cell</title><addtitle>Cell</addtitle><description>The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic “phagebodies.” We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.
[Display omitted]
•Vastly diverse phagebody libraries containing 107 different members were created•Structure-informed engineering of viral tail fibers generated host-range alterations•Bacterial resistance to phagebodies was not observed across long timescales•Select phagebodies limit bacterial growth in a mouse wound infection model
Bacteriophage libraries containing millions of variants of phage tail fiber motifs on a common structural scaffold give rise to infectious phages with expanded or altered host ranges, which may be useful for phage therapy efforts.</description><subject>animal models</subject><subject>anti-infective agents</subject><subject>antibiotic resistance</subject><subject>antibody</subject><subject>antibody specificity</subject><subject>antimicrobial</subject><subject>bacterial growth</subject><subject>bacteriophage</subject><subject>bacteriophages</subject><subject>evolution</subject><subject>functional diversity</subject><subject>host range</subject><subject>phage</subject><subject>resistance</subject><subject>site-directed mutagenesis</subject><subject>synthetic biology</subject><subject>tail fiber</subject><subject>virus</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkUFr3DAQhUVpaLZp_0APxcdevNXIkiVDCLQhaQoJLWl6FrI869XilTeSHOi_r8xuQ3IJhQEJzfcemnmEfAC6BAr1583S4jAsGYVmSXOBeEUWQBtZcpDsNVlQ2rBS1ZIfk7cxbiilSgjxhhxXIJSgqlqQ1YXvnUcMzvfFz7XpsbgaYypvjc9X47vi17TbBYxxBr4amzJqhuIWo4vJeItFWodx6tcH9Z1xQ3HpWgzFzZTyi5_Jd-RoZYaI7w_nCfl9eXF3flVe__j2_fzLdWm5UqmUqCqhUKpuZdAy1SJvW2wQhOhqqxitGSKrwSqQ2LaGMw4MKypV3dJKYXVCzva-u6ndYmfRp2AGvQtua8IfPRqnn3e8W-t-fNB1wziTLBt8OhiE8X7CmPTWxXnNxuM4Rc0qyUEBb9R_oBQ4ryTwjLI9asMYY8DV44-A6jlLvdGzUs9ZapoLRBZ9fDrLo-RfeBk43QOYN_rgMOhoHeZIOhfQJt2N7iX_v8-ascA</recordid><startdate>20191003</startdate><enddate>20191003</enddate><creator>Yehl, Kevin</creator><creator>Lemire, Sébastien</creator><creator>Yang, Andrew C.</creator><creator>Ando, Hiroki</creator><creator>Mimee, Mark</creator><creator>Torres, Marcelo Der Torossian</creator><creator>de la Fuente-Nunez, Cesar</creator><creator>Lu, Timothy K.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20191003</creationdate><title>Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis</title><author>Yehl, Kevin ; Lemire, Sébastien ; Yang, Andrew C. ; Ando, Hiroki ; Mimee, Mark ; Torres, Marcelo Der Torossian ; de la Fuente-Nunez, Cesar ; Lu, Timothy K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-7e8358e78dfaec28be4bbe9e155d6c82062ee261c817ebba42412e30786b038e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>animal models</topic><topic>anti-infective agents</topic><topic>antibiotic resistance</topic><topic>antibody</topic><topic>antibody specificity</topic><topic>antimicrobial</topic><topic>bacterial growth</topic><topic>bacteriophage</topic><topic>bacteriophages</topic><topic>evolution</topic><topic>functional diversity</topic><topic>host range</topic><topic>phage</topic><topic>resistance</topic><topic>site-directed mutagenesis</topic><topic>synthetic biology</topic><topic>tail fiber</topic><topic>virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yehl, Kevin</creatorcontrib><creatorcontrib>Lemire, Sébastien</creatorcontrib><creatorcontrib>Yang, Andrew C.</creatorcontrib><creatorcontrib>Ando, Hiroki</creatorcontrib><creatorcontrib>Mimee, Mark</creatorcontrib><creatorcontrib>Torres, Marcelo Der Torossian</creatorcontrib><creatorcontrib>de la Fuente-Nunez, Cesar</creatorcontrib><creatorcontrib>Lu, Timothy K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yehl, Kevin</au><au>Lemire, Sébastien</au><au>Yang, Andrew C.</au><au>Ando, Hiroki</au><au>Mimee, Mark</au><au>Torres, Marcelo Der Torossian</au><au>de la Fuente-Nunez, Cesar</au><au>Lu, Timothy K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2019-10-03</date><risdate>2019</risdate><volume>179</volume><issue>2</issue><spage>459</spage><epage>469.e9</epage><pages>459-469.e9</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic “phagebodies.” We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.
[Display omitted]
•Vastly diverse phagebody libraries containing 107 different members were created•Structure-informed engineering of viral tail fibers generated host-range alterations•Bacterial resistance to phagebodies was not observed across long timescales•Select phagebodies limit bacterial growth in a mouse wound infection model
Bacteriophage libraries containing millions of variants of phage tail fiber motifs on a common structural scaffold give rise to infectious phages with expanded or altered host ranges, which may be useful for phage therapy efforts.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31585083</pmid><doi>10.1016/j.cell.2019.09.015</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2019-10, Vol.179 (2), p.459-469.e9 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6924272 |
source | Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | animal models anti-infective agents antibiotic resistance antibody antibody specificity antimicrobial bacterial growth bacteriophage bacteriophages evolution functional diversity host range phage resistance site-directed mutagenesis synthetic biology tail fiber virus |
title | Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Phage%20Host-Range%20and%20Suppressing%20Bacterial%20Resistance%20through%20Phage%20Tail%20Fiber%20Mutagenesis&rft.jtitle=Cell&rft.au=Yehl,%20Kevin&rft.date=2019-10-03&rft.volume=179&rft.issue=2&rft.spage=459&rft.epage=469.e9&rft.pages=459-469.e9&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2019.09.015&rft_dat=%3Cproquest_pubme%3E2301443714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301443714&rft_id=info:pmid/31585083&rft_els_id=S0092867419310220&rfr_iscdi=true |