Multi-omics studies in cellular models of methylmalonic acidemia and propionic acidemia reveal dysregulation of serine metabolism
Methylmalonic acidemia (MMA) and propionic acidemia (PA) are related disorders of mitochondrial propionate metabolism, caused by defects in methylmalonyl-CoA mutase (MUT) and propionyl-CoA carboxylase (PCC), respectively. These biochemical defects lead to a complex cascade of downstream metabolic ab...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular basis of disease 2019-12, Vol.1865 (12), p.165538-165538, Article 165538 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165538 |
---|---|
container_issue | 12 |
container_start_page | 165538 |
container_title | Biochimica et biophysica acta. Molecular basis of disease |
container_volume | 1865 |
creator | Anzmann, Arianna Franca Pinto, Sneha Busa, Veronica Carlson, James McRitchie, Susan Sumner, Susan Pandey, Akhilesh Vernon, Hilary J. |
description | Methylmalonic acidemia (MMA) and propionic acidemia (PA) are related disorders of mitochondrial propionate metabolism, caused by defects in methylmalonyl-CoA mutase (MUT) and propionyl-CoA carboxylase (PCC), respectively. These biochemical defects lead to a complex cascade of downstream metabolic abnormalities, and identification of these abnormal pathways has important implications for understanding disease pathophysiology. Using a multi-omics approach in cellular models of MMA and PA, we identified serine and thiol metabolism as important areas of metabolic dysregulation.
We performed global proteomic analysis of fibroblasts and untargeted metabolomics analysis of plasma from individuals with MMA to identify novel pathways of dysfunction. We probed these novel pathways in CRISPR-edited, MUT and PCCA null HEK293 cell lines via targeted metabolomics, gene expression analysis, and flux metabolomics tracing utilization of 13C-glucose.
Proteomic analysis of fibroblasts identified upregulation of multiple proteins involved in serine synthesis and thiol metabolism including: phosphoserine amino transferase (PSAT1), cystathionine beta synthase (CBS), and mercaptopyruvate sulfurtransferase (MPST). Metabolomics analysis of plasma revealed significantly increased levels of cystathionine and glutathione, central metabolites in thiol metabolism. CRISPR-edited MUT and PCCA HEK293 cells recapitulate primary defects of MMA and PA and have upregulation of transcripts associated with serine and thiol metabolism including PSAT1. 13C-glucose flux metabolomics in MUT and PCCA null HEK293 cells identified increases in serine de novo biosynthesis, serine transport, and abnormal downstream TCA cycle utilization.
We identified abnormal serine metabolism as a novel area of cellular dysfunction in MMA and PA, thus introducing a potential new target for therapeutic investigation.
•We evaluated downstream biochemical abnormalities in methylmalonic and propionic acidemia.•Serine biosynthesis and utilization are altered in both disorders.•This has important implications for disease therapeutic targeting. |
doi_str_mv | 10.1016/j.bbadis.2019.165538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6923996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925443919302613</els_id><sourcerecordid>2281102800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-deab578ebc4af8aa620a8b8443e1e9917a5a7b745299b86497ab31a3b8227e8a3</originalsourceid><addsrcrecordid>eNp9kU2PFCEQQInRuOPqPzCGo5cege6m4WJiNn4la7xo4o0UULPLhG5G6J5kjv5z6cy6uhe5kFBVr6h6hLzkbMsZl2_2W2vBh7IVjOstl33fqkdkw9WgGyHZj8dkw7Tom65r9QV5Vsqe1SMH9pRctLzrtJZ6Q359WeIcmjQGV2iZFx-w0DBRhzEuETIdk8dYaNrREefbUxwhpik4Ci54HANQmDw95HQID58zHhEi9aeS8aaS5hpfKQVzmHCFgU0xlPE5ebKDWPDF3X1Jvn94_-3qU3P99ePnq3fXjetkOzcewfaDQus62CkAKRgoq-p0yFFrPkAPgx26Xmhtlez0ALbl0FolxIAK2kvy9sw9LHZE73CaM0RzyGGEfDIJgnkYmcKtuUlHI7Vo67Iq4PUdIKefC5bZjKGse4IJ01KMEIpzJhRjNbU7p7qcSl3A7r4NZ2a1Z_bmbM-s9szZXi179e8X74v-6Po7Q1WCx4DZFBdwcuhDRjcbn8L_O_wGnhux4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281102800</pqid></control><display><type>article</type><title>Multi-omics studies in cellular models of methylmalonic acidemia and propionic acidemia reveal dysregulation of serine metabolism</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Anzmann, Arianna Franca ; Pinto, Sneha ; Busa, Veronica ; Carlson, James ; McRitchie, Susan ; Sumner, Susan ; Pandey, Akhilesh ; Vernon, Hilary J.</creator><creatorcontrib>Anzmann, Arianna Franca ; Pinto, Sneha ; Busa, Veronica ; Carlson, James ; McRitchie, Susan ; Sumner, Susan ; Pandey, Akhilesh ; Vernon, Hilary J.</creatorcontrib><description>Methylmalonic acidemia (MMA) and propionic acidemia (PA) are related disorders of mitochondrial propionate metabolism, caused by defects in methylmalonyl-CoA mutase (MUT) and propionyl-CoA carboxylase (PCC), respectively. These biochemical defects lead to a complex cascade of downstream metabolic abnormalities, and identification of these abnormal pathways has important implications for understanding disease pathophysiology. Using a multi-omics approach in cellular models of MMA and PA, we identified serine and thiol metabolism as important areas of metabolic dysregulation.
We performed global proteomic analysis of fibroblasts and untargeted metabolomics analysis of plasma from individuals with MMA to identify novel pathways of dysfunction. We probed these novel pathways in CRISPR-edited, MUT and PCCA null HEK293 cell lines via targeted metabolomics, gene expression analysis, and flux metabolomics tracing utilization of 13C-glucose.
Proteomic analysis of fibroblasts identified upregulation of multiple proteins involved in serine synthesis and thiol metabolism including: phosphoserine amino transferase (PSAT1), cystathionine beta synthase (CBS), and mercaptopyruvate sulfurtransferase (MPST). Metabolomics analysis of plasma revealed significantly increased levels of cystathionine and glutathione, central metabolites in thiol metabolism. CRISPR-edited MUT and PCCA HEK293 cells recapitulate primary defects of MMA and PA and have upregulation of transcripts associated with serine and thiol metabolism including PSAT1. 13C-glucose flux metabolomics in MUT and PCCA null HEK293 cells identified increases in serine de novo biosynthesis, serine transport, and abnormal downstream TCA cycle utilization.
We identified abnormal serine metabolism as a novel area of cellular dysfunction in MMA and PA, thus introducing a potential new target for therapeutic investigation.
•We evaluated downstream biochemical abnormalities in methylmalonic and propionic acidemia.•Serine biosynthesis and utilization are altered in both disorders.•This has important implications for disease therapeutic targeting.</description><identifier>ISSN: 0925-4439</identifier><identifier>EISSN: 1879-260X</identifier><identifier>DOI: 10.1016/j.bbadis.2019.165538</identifier><identifier>PMID: 31449969</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amino Acid Metabolism, Inborn Errors - metabolism ; Cells, Cultured ; Fibroblasts - metabolism ; HEK293 Cells ; Humans ; Metabolome ; Metabolomics ; Methylmalonic acidemia ; Propionic acidemia ; Propionic Acidemia - metabolism ; Proteome - metabolism ; Proteomics ; Serine - metabolism</subject><ispartof>Biochimica et biophysica acta. Molecular basis of disease, 2019-12, Vol.1865 (12), p.165538-165538, Article 165538</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-deab578ebc4af8aa620a8b8443e1e9917a5a7b745299b86497ab31a3b8227e8a3</citedby><cites>FETCH-LOGICAL-c463t-deab578ebc4af8aa620a8b8443e1e9917a5a7b745299b86497ab31a3b8227e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbadis.2019.165538$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31449969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anzmann, Arianna Franca</creatorcontrib><creatorcontrib>Pinto, Sneha</creatorcontrib><creatorcontrib>Busa, Veronica</creatorcontrib><creatorcontrib>Carlson, James</creatorcontrib><creatorcontrib>McRitchie, Susan</creatorcontrib><creatorcontrib>Sumner, Susan</creatorcontrib><creatorcontrib>Pandey, Akhilesh</creatorcontrib><creatorcontrib>Vernon, Hilary J.</creatorcontrib><title>Multi-omics studies in cellular models of methylmalonic acidemia and propionic acidemia reveal dysregulation of serine metabolism</title><title>Biochimica et biophysica acta. Molecular basis of disease</title><addtitle>Biochim Biophys Acta Mol Basis Dis</addtitle><description>Methylmalonic acidemia (MMA) and propionic acidemia (PA) are related disorders of mitochondrial propionate metabolism, caused by defects in methylmalonyl-CoA mutase (MUT) and propionyl-CoA carboxylase (PCC), respectively. These biochemical defects lead to a complex cascade of downstream metabolic abnormalities, and identification of these abnormal pathways has important implications for understanding disease pathophysiology. Using a multi-omics approach in cellular models of MMA and PA, we identified serine and thiol metabolism as important areas of metabolic dysregulation.
We performed global proteomic analysis of fibroblasts and untargeted metabolomics analysis of plasma from individuals with MMA to identify novel pathways of dysfunction. We probed these novel pathways in CRISPR-edited, MUT and PCCA null HEK293 cell lines via targeted metabolomics, gene expression analysis, and flux metabolomics tracing utilization of 13C-glucose.
Proteomic analysis of fibroblasts identified upregulation of multiple proteins involved in serine synthesis and thiol metabolism including: phosphoserine amino transferase (PSAT1), cystathionine beta synthase (CBS), and mercaptopyruvate sulfurtransferase (MPST). Metabolomics analysis of plasma revealed significantly increased levels of cystathionine and glutathione, central metabolites in thiol metabolism. CRISPR-edited MUT and PCCA HEK293 cells recapitulate primary defects of MMA and PA and have upregulation of transcripts associated with serine and thiol metabolism including PSAT1. 13C-glucose flux metabolomics in MUT and PCCA null HEK293 cells identified increases in serine de novo biosynthesis, serine transport, and abnormal downstream TCA cycle utilization.
We identified abnormal serine metabolism as a novel area of cellular dysfunction in MMA and PA, thus introducing a potential new target for therapeutic investigation.
•We evaluated downstream biochemical abnormalities in methylmalonic and propionic acidemia.•Serine biosynthesis and utilization are altered in both disorders.•This has important implications for disease therapeutic targeting.</description><subject>Amino Acid Metabolism, Inborn Errors - metabolism</subject><subject>Cells, Cultured</subject><subject>Fibroblasts - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Methylmalonic acidemia</subject><subject>Propionic acidemia</subject><subject>Propionic Acidemia - metabolism</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Serine - metabolism</subject><issn>0925-4439</issn><issn>1879-260X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2PFCEQQInRuOPqPzCGo5cege6m4WJiNn4la7xo4o0UULPLhG5G6J5kjv5z6cy6uhe5kFBVr6h6hLzkbMsZl2_2W2vBh7IVjOstl33fqkdkw9WgGyHZj8dkw7Tom65r9QV5Vsqe1SMH9pRctLzrtJZ6Q359WeIcmjQGV2iZFx-w0DBRhzEuETIdk8dYaNrREefbUxwhpik4Ci54HANQmDw95HQID58zHhEi9aeS8aaS5hpfKQVzmHCFgU0xlPE5ebKDWPDF3X1Jvn94_-3qU3P99ePnq3fXjetkOzcewfaDQus62CkAKRgoq-p0yFFrPkAPgx26Xmhtlez0ALbl0FolxIAK2kvy9sw9LHZE73CaM0RzyGGEfDIJgnkYmcKtuUlHI7Vo67Iq4PUdIKefC5bZjKGse4IJ01KMEIpzJhRjNbU7p7qcSl3A7r4NZ2a1Z_bmbM-s9szZXi179e8X74v-6Po7Q1WCx4DZFBdwcuhDRjcbn8L_O_wGnhux4Q</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Anzmann, Arianna Franca</creator><creator>Pinto, Sneha</creator><creator>Busa, Veronica</creator><creator>Carlson, James</creator><creator>McRitchie, Susan</creator><creator>Sumner, Susan</creator><creator>Pandey, Akhilesh</creator><creator>Vernon, Hilary J.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191201</creationdate><title>Multi-omics studies in cellular models of methylmalonic acidemia and propionic acidemia reveal dysregulation of serine metabolism</title><author>Anzmann, Arianna Franca ; Pinto, Sneha ; Busa, Veronica ; Carlson, James ; McRitchie, Susan ; Sumner, Susan ; Pandey, Akhilesh ; Vernon, Hilary J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-deab578ebc4af8aa620a8b8443e1e9917a5a7b745299b86497ab31a3b8227e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Metabolism, Inborn Errors - metabolism</topic><topic>Cells, Cultured</topic><topic>Fibroblasts - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Methylmalonic acidemia</topic><topic>Propionic acidemia</topic><topic>Propionic Acidemia - metabolism</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Serine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anzmann, Arianna Franca</creatorcontrib><creatorcontrib>Pinto, Sneha</creatorcontrib><creatorcontrib>Busa, Veronica</creatorcontrib><creatorcontrib>Carlson, James</creatorcontrib><creatorcontrib>McRitchie, Susan</creatorcontrib><creatorcontrib>Sumner, Susan</creatorcontrib><creatorcontrib>Pandey, Akhilesh</creatorcontrib><creatorcontrib>Vernon, Hilary J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta. Molecular basis of disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anzmann, Arianna Franca</au><au>Pinto, Sneha</au><au>Busa, Veronica</au><au>Carlson, James</au><au>McRitchie, Susan</au><au>Sumner, Susan</au><au>Pandey, Akhilesh</au><au>Vernon, Hilary J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-omics studies in cellular models of methylmalonic acidemia and propionic acidemia reveal dysregulation of serine metabolism</atitle><jtitle>Biochimica et biophysica acta. Molecular basis of disease</jtitle><addtitle>Biochim Biophys Acta Mol Basis Dis</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>1865</volume><issue>12</issue><spage>165538</spage><epage>165538</epage><pages>165538-165538</pages><artnum>165538</artnum><issn>0925-4439</issn><eissn>1879-260X</eissn><abstract>Methylmalonic acidemia (MMA) and propionic acidemia (PA) are related disorders of mitochondrial propionate metabolism, caused by defects in methylmalonyl-CoA mutase (MUT) and propionyl-CoA carboxylase (PCC), respectively. These biochemical defects lead to a complex cascade of downstream metabolic abnormalities, and identification of these abnormal pathways has important implications for understanding disease pathophysiology. Using a multi-omics approach in cellular models of MMA and PA, we identified serine and thiol metabolism as important areas of metabolic dysregulation.
We performed global proteomic analysis of fibroblasts and untargeted metabolomics analysis of plasma from individuals with MMA to identify novel pathways of dysfunction. We probed these novel pathways in CRISPR-edited, MUT and PCCA null HEK293 cell lines via targeted metabolomics, gene expression analysis, and flux metabolomics tracing utilization of 13C-glucose.
Proteomic analysis of fibroblasts identified upregulation of multiple proteins involved in serine synthesis and thiol metabolism including: phosphoserine amino transferase (PSAT1), cystathionine beta synthase (CBS), and mercaptopyruvate sulfurtransferase (MPST). Metabolomics analysis of plasma revealed significantly increased levels of cystathionine and glutathione, central metabolites in thiol metabolism. CRISPR-edited MUT and PCCA HEK293 cells recapitulate primary defects of MMA and PA and have upregulation of transcripts associated with serine and thiol metabolism including PSAT1. 13C-glucose flux metabolomics in MUT and PCCA null HEK293 cells identified increases in serine de novo biosynthesis, serine transport, and abnormal downstream TCA cycle utilization.
We identified abnormal serine metabolism as a novel area of cellular dysfunction in MMA and PA, thus introducing a potential new target for therapeutic investigation.
•We evaluated downstream biochemical abnormalities in methylmalonic and propionic acidemia.•Serine biosynthesis and utilization are altered in both disorders.•This has important implications for disease therapeutic targeting.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31449969</pmid><doi>10.1016/j.bbadis.2019.165538</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4439 |
ispartof | Biochimica et biophysica acta. Molecular basis of disease, 2019-12, Vol.1865 (12), p.165538-165538, Article 165538 |
issn | 0925-4439 1879-260X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6923996 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Amino Acid Metabolism, Inborn Errors - metabolism Cells, Cultured Fibroblasts - metabolism HEK293 Cells Humans Metabolome Metabolomics Methylmalonic acidemia Propionic acidemia Propionic Acidemia - metabolism Proteome - metabolism Proteomics Serine - metabolism |
title | Multi-omics studies in cellular models of methylmalonic acidemia and propionic acidemia reveal dysregulation of serine metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-omics%20studies%20in%20cellular%20models%20of%20methylmalonic%20acidemia%20and%20propionic%20acidemia%20reveal%20dysregulation%20of%20serine%20metabolism&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Molecular%20basis%20of%20disease&rft.au=Anzmann,%20Arianna%20Franca&rft.date=2019-12-01&rft.volume=1865&rft.issue=12&rft.spage=165538&rft.epage=165538&rft.pages=165538-165538&rft.artnum=165538&rft.issn=0925-4439&rft.eissn=1879-260X&rft_id=info:doi/10.1016/j.bbadis.2019.165538&rft_dat=%3Cproquest_pubme%3E2281102800%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281102800&rft_id=info:pmid/31449969&rft_els_id=S0925443919302613&rfr_iscdi=true |