KRAS4A directly regulates hexokinase 1

The most frequently mutated oncogene in cancer is KRAS , which uses alternative fourth exons to generate two gene products (KRAS4A and KRAS4B) that differ only in their C-terminal membrane-targeting region 1 . Because oncogenic mutations occur in exons 2 or 3, two constitutively active KRAS proteins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2019-12, Vol.576 (7787), p.482-486
Hauptverfasser: Amendola, Caroline R., Mahaffey, James P., Parker, Seth J., Ahearn, Ian M., Chen, Wei-Ching, Zhou, Mo, Court, Helen, Shi, Jie, Mendoza, Sebastian L., Morten, Michael J., Rothenberg, Eli, Gottlieb, Eyal, Wadghiri, Youssef Z., Possemato, Richard, Hubbard, Stevan R., Balmain, Allan, Kimmelman, Alec C., Philips, Mark R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 7787
container_start_page 482
container_title Nature (London)
container_volume 576
creator Amendola, Caroline R.
Mahaffey, James P.
Parker, Seth J.
Ahearn, Ian M.
Chen, Wei-Ching
Zhou, Mo
Court, Helen
Shi, Jie
Mendoza, Sebastian L.
Morten, Michael J.
Rothenberg, Eli
Gottlieb, Eyal
Wadghiri, Youssef Z.
Possemato, Richard
Hubbard, Stevan R.
Balmain, Allan
Kimmelman, Alec C.
Philips, Mark R.
description The most frequently mutated oncogene in cancer is KRAS , which uses alternative fourth exons to generate two gene products (KRAS4A and KRAS4B) that differ only in their C-terminal membrane-targeting region 1 . Because oncogenic mutations occur in exons 2 or 3, two constitutively active KRAS proteins—each capable of transforming cells—are encoded when KRAS is activated by mutation 2 . No functional distinctions among the splice variants have so far been established. Oncogenic KRAS alters the metabolism of tumour cells 3 in several ways, including increased glucose uptake and glycolysis even in the presence of abundant oxygen 4 (the Warburg effect). Whereas these metabolic effects of oncogenic KRAS have been explained by transcriptional upregulation of glucose transporters and glycolytic enzymes 3 – 5 , it is not known whether there is direct regulation of metabolic enzymes. Here we report a direct, GTP-dependent interaction between KRAS4A and hexokinase 1 (HK1) that alters the activity of the kinase, and thereby establish that HK1 is an effector of KRAS4A. This interaction is unique to KRAS4A because the palmitoylation–depalmitoylation cycle of this RAS isoform enables colocalization with HK1 on the outer mitochondrial membrane. The expression of KRAS4A in cancer may drive unique metabolic vulnerabilities that can be exploited therapeutically. KRAS4A interacts directly with hexokinase 1 in a GTP-dependent manner at the outer mitochondrial membrane, leading to kinase activation and an increase in glucose uptake and glycolysis in tumour cells.
doi_str_mv 10.1038/s41586-019-1832-9
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6923592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649563630</galeid><sourcerecordid>A649563630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-866b19671858cc19260e509d362e9c0d8576c43ae64e727485bda384cf41d6fa3</originalsourceid><addsrcrecordid>eNp1kttqGzEQhkVpaBy3D9CbYloIzYVSnVaHm4IJPYQGCkl7LWTt7EbpWutIuyF5-8g4TeLiIoRA880_o9GP0FtKjinh-lMWtNISE2ow1Zxh8wJNqFASC6nVSzQhhGlMNJf76CDnK0JIRZV4hfY51UwxZSbo8Mf5_ELMZ3VI4IfubpagHTs3QJ5dwm3_J0SXYUZfo73GdRnePJxT9Pvrl18n3_HZz2-nJ_Mz7KXiA9ZSLqiRiupKe08NkwQqYmouGRhPal0p6QV3IAWU-kJXi9pxLXwjaC0bx6fo80Z3NS6WUHuIQ3KdXaWwdOnO9i7Y7UgMl7btb6w0jFdlT9HHB4HUX4-QB7sM2UPXuQj9mC3jrOKEE6EK-uEf9KofUyzPKxQXpDRIyBPVug5siE1f6vq1qJ1LYSrJJV9TeAfVQoTSZB-hCeV6i3-_g_ercG2fQ8c7oLJqWAa_U_VoK6EwA9wOrRtztqcX59ss3bA-9TknaB6HTIldu8tu3GWLu-zaXdaUnHfPf-cx46-dCsA2QC6h2EJ6Gun_Ve8BG3HTrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334072700</pqid></control><display><type>article</type><title>KRAS4A directly regulates hexokinase 1</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Amendola, Caroline R. ; Mahaffey, James P. ; Parker, Seth J. ; Ahearn, Ian M. ; Chen, Wei-Ching ; Zhou, Mo ; Court, Helen ; Shi, Jie ; Mendoza, Sebastian L. ; Morten, Michael J. ; Rothenberg, Eli ; Gottlieb, Eyal ; Wadghiri, Youssef Z. ; Possemato, Richard ; Hubbard, Stevan R. ; Balmain, Allan ; Kimmelman, Alec C. ; Philips, Mark R.</creator><creatorcontrib>Amendola, Caroline R. ; Mahaffey, James P. ; Parker, Seth J. ; Ahearn, Ian M. ; Chen, Wei-Ching ; Zhou, Mo ; Court, Helen ; Shi, Jie ; Mendoza, Sebastian L. ; Morten, Michael J. ; Rothenberg, Eli ; Gottlieb, Eyal ; Wadghiri, Youssef Z. ; Possemato, Richard ; Hubbard, Stevan R. ; Balmain, Allan ; Kimmelman, Alec C. ; Philips, Mark R.</creatorcontrib><description>The most frequently mutated oncogene in cancer is KRAS , which uses alternative fourth exons to generate two gene products (KRAS4A and KRAS4B) that differ only in their C-terminal membrane-targeting region 1 . Because oncogenic mutations occur in exons 2 or 3, two constitutively active KRAS proteins—each capable of transforming cells—are encoded when KRAS is activated by mutation 2 . No functional distinctions among the splice variants have so far been established. Oncogenic KRAS alters the metabolism of tumour cells 3 in several ways, including increased glucose uptake and glycolysis even in the presence of abundant oxygen 4 (the Warburg effect). Whereas these metabolic effects of oncogenic KRAS have been explained by transcriptional upregulation of glucose transporters and glycolytic enzymes 3 – 5 , it is not known whether there is direct regulation of metabolic enzymes. Here we report a direct, GTP-dependent interaction between KRAS4A and hexokinase 1 (HK1) that alters the activity of the kinase, and thereby establish that HK1 is an effector of KRAS4A. This interaction is unique to KRAS4A because the palmitoylation–depalmitoylation cycle of this RAS isoform enables colocalization with HK1 on the outer mitochondrial membrane. The expression of KRAS4A in cancer may drive unique metabolic vulnerabilities that can be exploited therapeutically. KRAS4A interacts directly with hexokinase 1 in a GTP-dependent manner at the outer mitochondrial membrane, leading to kinase activation and an increase in glucose uptake and glycolysis in tumour cells.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1832-9</identifier><identifier>PMID: 31827279</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/109 ; 13/89 ; 13/95 ; 14/19 ; 59 ; 631/67/2327 ; 631/80/86 ; 82/29 ; 82/58 ; 82/80 ; Allosteric Regulation ; Alternative splicing ; Amino acids ; Animals ; Cancer ; Cell Line, Tumor ; Colorectal cancer ; Competition ; Enzyme Activation ; Enzymes ; Exons ; Genetic regulation ; Glucose ; Glycolysis ; Guanosine triphosphate ; Guanosine Triphosphate - metabolism ; Health aspects ; Hexokinase ; Hexokinase - chemistry ; Hexokinase - metabolism ; Humanities and Social Sciences ; Humans ; In Vitro Techniques ; Isoenzymes - metabolism ; K-Ras protein ; Kinases ; Lipoylation ; Male ; Membranes ; Metabolism ; Mice ; Mitochondria ; Mitochondria - enzymology ; Mitochondria - metabolism ; Mitochondrial Membranes - enzymology ; Mitochondrial Membranes - metabolism ; multidisciplinary ; Mutation ; Neoplasms - enzymology ; Neoplasms - metabolism ; Oncogenes ; Palmitoylation ; Phosphotransferases ; Physiological aspects ; Protein Binding ; Protein Transport ; Proteins ; Proto-Oncogene Proteins p21(ras) - metabolism ; Science ; Science (multidisciplinary) ; Transcription ; Tumors</subject><ispartof>Nature (London), 2019-12, Vol.576 (7787), p.482-486</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 19-Dec 26, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-866b19671858cc19260e509d362e9c0d8576c43ae64e727485bda384cf41d6fa3</citedby><cites>FETCH-LOGICAL-c673t-866b19671858cc19260e509d362e9c0d8576c43ae64e727485bda384cf41d6fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1832-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1832-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31827279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amendola, Caroline R.</creatorcontrib><creatorcontrib>Mahaffey, James P.</creatorcontrib><creatorcontrib>Parker, Seth J.</creatorcontrib><creatorcontrib>Ahearn, Ian M.</creatorcontrib><creatorcontrib>Chen, Wei-Ching</creatorcontrib><creatorcontrib>Zhou, Mo</creatorcontrib><creatorcontrib>Court, Helen</creatorcontrib><creatorcontrib>Shi, Jie</creatorcontrib><creatorcontrib>Mendoza, Sebastian L.</creatorcontrib><creatorcontrib>Morten, Michael J.</creatorcontrib><creatorcontrib>Rothenberg, Eli</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Wadghiri, Youssef Z.</creatorcontrib><creatorcontrib>Possemato, Richard</creatorcontrib><creatorcontrib>Hubbard, Stevan R.</creatorcontrib><creatorcontrib>Balmain, Allan</creatorcontrib><creatorcontrib>Kimmelman, Alec C.</creatorcontrib><creatorcontrib>Philips, Mark R.</creatorcontrib><title>KRAS4A directly regulates hexokinase 1</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The most frequently mutated oncogene in cancer is KRAS , which uses alternative fourth exons to generate two gene products (KRAS4A and KRAS4B) that differ only in their C-terminal membrane-targeting region 1 . Because oncogenic mutations occur in exons 2 or 3, two constitutively active KRAS proteins—each capable of transforming cells—are encoded when KRAS is activated by mutation 2 . No functional distinctions among the splice variants have so far been established. Oncogenic KRAS alters the metabolism of tumour cells 3 in several ways, including increased glucose uptake and glycolysis even in the presence of abundant oxygen 4 (the Warburg effect). Whereas these metabolic effects of oncogenic KRAS have been explained by transcriptional upregulation of glucose transporters and glycolytic enzymes 3 – 5 , it is not known whether there is direct regulation of metabolic enzymes. Here we report a direct, GTP-dependent interaction between KRAS4A and hexokinase 1 (HK1) that alters the activity of the kinase, and thereby establish that HK1 is an effector of KRAS4A. This interaction is unique to KRAS4A because the palmitoylation–depalmitoylation cycle of this RAS isoform enables colocalization with HK1 on the outer mitochondrial membrane. The expression of KRAS4A in cancer may drive unique metabolic vulnerabilities that can be exploited therapeutically. KRAS4A interacts directly with hexokinase 1 in a GTP-dependent manner at the outer mitochondrial membrane, leading to kinase activation and an increase in glucose uptake and glycolysis in tumour cells.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/89</subject><subject>13/95</subject><subject>14/19</subject><subject>59</subject><subject>631/67/2327</subject><subject>631/80/86</subject><subject>82/29</subject><subject>82/58</subject><subject>82/80</subject><subject>Allosteric Regulation</subject><subject>Alternative splicing</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Colorectal cancer</subject><subject>Competition</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Exons</subject><subject>Genetic regulation</subject><subject>Glucose</subject><subject>Glycolysis</subject><subject>Guanosine triphosphate</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Health aspects</subject><subject>Hexokinase</subject><subject>Hexokinase - chemistry</subject><subject>Hexokinase - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Isoenzymes - metabolism</subject><subject>K-Ras protein</subject><subject>Kinases</subject><subject>Lipoylation</subject><subject>Male</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membranes - enzymology</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - metabolism</subject><subject>Oncogenes</subject><subject>Palmitoylation</subject><subject>Phosphotransferases</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kttqGzEQhkVpaBy3D9CbYloIzYVSnVaHm4IJPYQGCkl7LWTt7EbpWutIuyF5-8g4TeLiIoRA880_o9GP0FtKjinh-lMWtNISE2ow1Zxh8wJNqFASC6nVSzQhhGlMNJf76CDnK0JIRZV4hfY51UwxZSbo8Mf5_ELMZ3VI4IfubpagHTs3QJ5dwm3_J0SXYUZfo73GdRnePJxT9Pvrl18n3_HZz2-nJ_Mz7KXiA9ZSLqiRiupKe08NkwQqYmouGRhPal0p6QV3IAWU-kJXi9pxLXwjaC0bx6fo80Z3NS6WUHuIQ3KdXaWwdOnO9i7Y7UgMl7btb6w0jFdlT9HHB4HUX4-QB7sM2UPXuQj9mC3jrOKEE6EK-uEf9KofUyzPKxQXpDRIyBPVug5siE1f6vq1qJ1LYSrJJV9TeAfVQoTSZB-hCeV6i3-_g_ercG2fQ8c7oLJqWAa_U_VoK6EwA9wOrRtztqcX59ss3bA-9TknaB6HTIldu8tu3GWLu-zaXdaUnHfPf-cx46-dCsA2QC6h2EJ6Gun_Ve8BG3HTrg</recordid><startdate>20191219</startdate><enddate>20191219</enddate><creator>Amendola, Caroline R.</creator><creator>Mahaffey, James P.</creator><creator>Parker, Seth J.</creator><creator>Ahearn, Ian M.</creator><creator>Chen, Wei-Ching</creator><creator>Zhou, Mo</creator><creator>Court, Helen</creator><creator>Shi, Jie</creator><creator>Mendoza, Sebastian L.</creator><creator>Morten, Michael J.</creator><creator>Rothenberg, Eli</creator><creator>Gottlieb, Eyal</creator><creator>Wadghiri, Youssef Z.</creator><creator>Possemato, Richard</creator><creator>Hubbard, Stevan R.</creator><creator>Balmain, Allan</creator><creator>Kimmelman, Alec C.</creator><creator>Philips, Mark R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191219</creationdate><title>KRAS4A directly regulates hexokinase 1</title><author>Amendola, Caroline R. ; Mahaffey, James P. ; Parker, Seth J. ; Ahearn, Ian M. ; Chen, Wei-Ching ; Zhou, Mo ; Court, Helen ; Shi, Jie ; Mendoza, Sebastian L. ; Morten, Michael J. ; Rothenberg, Eli ; Gottlieb, Eyal ; Wadghiri, Youssef Z. ; Possemato, Richard ; Hubbard, Stevan R. ; Balmain, Allan ; Kimmelman, Alec C. ; Philips, Mark R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-866b19671858cc19260e509d362e9c0d8576c43ae64e727485bda384cf41d6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/89</topic><topic>13/95</topic><topic>14/19</topic><topic>59</topic><topic>631/67/2327</topic><topic>631/80/86</topic><topic>82/29</topic><topic>82/58</topic><topic>82/80</topic><topic>Allosteric Regulation</topic><topic>Alternative splicing</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Colorectal cancer</topic><topic>Competition</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Exons</topic><topic>Genetic regulation</topic><topic>Glucose</topic><topic>Glycolysis</topic><topic>Guanosine triphosphate</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Health aspects</topic><topic>Hexokinase</topic><topic>Hexokinase - chemistry</topic><topic>Hexokinase - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Isoenzymes - metabolism</topic><topic>K-Ras protein</topic><topic>Kinases</topic><topic>Lipoylation</topic><topic>Male</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membranes - enzymology</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - metabolism</topic><topic>Oncogenes</topic><topic>Palmitoylation</topic><topic>Phosphotransferases</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amendola, Caroline R.</creatorcontrib><creatorcontrib>Mahaffey, James P.</creatorcontrib><creatorcontrib>Parker, Seth J.</creatorcontrib><creatorcontrib>Ahearn, Ian M.</creatorcontrib><creatorcontrib>Chen, Wei-Ching</creatorcontrib><creatorcontrib>Zhou, Mo</creatorcontrib><creatorcontrib>Court, Helen</creatorcontrib><creatorcontrib>Shi, Jie</creatorcontrib><creatorcontrib>Mendoza, Sebastian L.</creatorcontrib><creatorcontrib>Morten, Michael J.</creatorcontrib><creatorcontrib>Rothenberg, Eli</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Wadghiri, Youssef Z.</creatorcontrib><creatorcontrib>Possemato, Richard</creatorcontrib><creatorcontrib>Hubbard, Stevan R.</creatorcontrib><creatorcontrib>Balmain, Allan</creatorcontrib><creatorcontrib>Kimmelman, Alec C.</creatorcontrib><creatorcontrib>Philips, Mark R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amendola, Caroline R.</au><au>Mahaffey, James P.</au><au>Parker, Seth J.</au><au>Ahearn, Ian M.</au><au>Chen, Wei-Ching</au><au>Zhou, Mo</au><au>Court, Helen</au><au>Shi, Jie</au><au>Mendoza, Sebastian L.</au><au>Morten, Michael J.</au><au>Rothenberg, Eli</au><au>Gottlieb, Eyal</au><au>Wadghiri, Youssef Z.</au><au>Possemato, Richard</au><au>Hubbard, Stevan R.</au><au>Balmain, Allan</au><au>Kimmelman, Alec C.</au><au>Philips, Mark R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KRAS4A directly regulates hexokinase 1</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-12-19</date><risdate>2019</risdate><volume>576</volume><issue>7787</issue><spage>482</spage><epage>486</epage><pages>482-486</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The most frequently mutated oncogene in cancer is KRAS , which uses alternative fourth exons to generate two gene products (KRAS4A and KRAS4B) that differ only in their C-terminal membrane-targeting region 1 . Because oncogenic mutations occur in exons 2 or 3, two constitutively active KRAS proteins—each capable of transforming cells—are encoded when KRAS is activated by mutation 2 . No functional distinctions among the splice variants have so far been established. Oncogenic KRAS alters the metabolism of tumour cells 3 in several ways, including increased glucose uptake and glycolysis even in the presence of abundant oxygen 4 (the Warburg effect). Whereas these metabolic effects of oncogenic KRAS have been explained by transcriptional upregulation of glucose transporters and glycolytic enzymes 3 – 5 , it is not known whether there is direct regulation of metabolic enzymes. Here we report a direct, GTP-dependent interaction between KRAS4A and hexokinase 1 (HK1) that alters the activity of the kinase, and thereby establish that HK1 is an effector of KRAS4A. This interaction is unique to KRAS4A because the palmitoylation–depalmitoylation cycle of this RAS isoform enables colocalization with HK1 on the outer mitochondrial membrane. The expression of KRAS4A in cancer may drive unique metabolic vulnerabilities that can be exploited therapeutically. KRAS4A interacts directly with hexokinase 1 in a GTP-dependent manner at the outer mitochondrial membrane, leading to kinase activation and an increase in glucose uptake and glycolysis in tumour cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31827279</pmid><doi>10.1038/s41586-019-1832-9</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2019-12, Vol.576 (7787), p.482-486
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6923592
source MEDLINE; SpringerLink Journals; Nature
subjects 13/1
13/106
13/109
13/89
13/95
14/19
59
631/67/2327
631/80/86
82/29
82/58
82/80
Allosteric Regulation
Alternative splicing
Amino acids
Animals
Cancer
Cell Line, Tumor
Colorectal cancer
Competition
Enzyme Activation
Enzymes
Exons
Genetic regulation
Glucose
Glycolysis
Guanosine triphosphate
Guanosine Triphosphate - metabolism
Health aspects
Hexokinase
Hexokinase - chemistry
Hexokinase - metabolism
Humanities and Social Sciences
Humans
In Vitro Techniques
Isoenzymes - metabolism
K-Ras protein
Kinases
Lipoylation
Male
Membranes
Metabolism
Mice
Mitochondria
Mitochondria - enzymology
Mitochondria - metabolism
Mitochondrial Membranes - enzymology
Mitochondrial Membranes - metabolism
multidisciplinary
Mutation
Neoplasms - enzymology
Neoplasms - metabolism
Oncogenes
Palmitoylation
Phosphotransferases
Physiological aspects
Protein Binding
Protein Transport
Proteins
Proto-Oncogene Proteins p21(ras) - metabolism
Science
Science (multidisciplinary)
Transcription
Tumors
title KRAS4A directly regulates hexokinase 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KRAS4A%20directly%20regulates%20hexokinase%201&rft.jtitle=Nature%20(London)&rft.au=Amendola,%20Caroline%20R.&rft.date=2019-12-19&rft.volume=576&rft.issue=7787&rft.spage=482&rft.epage=486&rft.pages=482-486&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1832-9&rft_dat=%3Cgale_pubme%3EA649563630%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334072700&rft_id=info:pmid/31827279&rft_galeid=A649563630&rfr_iscdi=true