Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances
Aim Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets. Methods and Results We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of a...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2019-08, Vol.127 (2), p.354-369 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 2 |
container_start_page | 354 |
container_title | Journal of applied microbiology |
container_volume | 127 |
creator | Zhang, W. Ma, C. Xie, P. Zhu, Q. Wang, X. Yin, Y. Kong, X. |
description | Aim
Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets.
Methods and Results
We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA sequencing. The results showed that IUGR piglets had a decreased alpha diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age, Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at 21 days of age; whereas they had higher abundances of Proteobacteria and Pasteurella in the ileum at 21 days of age and Escherichia–Shigella in the jejunum at 28 days of age. Correlation analysis showed that Bacteroides, Oscillibacter and Ruminococcaceae_UCG‐002 compositions were positively associated with the body weight (BW) of IUGR piglets, nevertheless Proteobacteria and Escherichia–Shigella relative abundances were negatively correlated with the BW of IUGR piglets. Gene function prediction analysis indicated that microbiota‐associated carbohydrate metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and xenobiotics biodegradation and metabolism were downregulated in the IUGR piglets compared to control piglets.
Conclusions
The present study profiled the intestinal microbiota of newborn piglets with IUGR and the newborn IUGR piglets have lower diversity and different taxonomic abundances. Alterations in the abundances of Bacteroidetes, Bacteroides, Proteobacteria Escherichia–Shigella and Pasteurella may be involved in nutrient digestion and absorption, as well as the potential mechanisms connecting to the growth and development of IUGR in mammals.
Significance and Impact of the Study
The small intestinal microbiota were highly shaped in the IUGR piglets, which might further mediate the growth and development of IUGR piglets; and the gut microbiota could serve as a potential target for IUGR treatment. |
doi_str_mv | 10.1111/jam.14304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6916403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231911466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-ff1c299912d72caa8d7fdfebcab3b77953ef3c92fd2e924b116fa22c7340ad743</originalsourceid><addsrcrecordid>eNqNkktvEzEUhUcIREthwR9AltjAIq1fY8cbpKqCAipiA2vL47lOHM3YwfZkyIbfjpuUCpCQ8MavT-f6-J6meU7wOanjYmPGc8IZ5g-aU8JEu6BC0oeHNV-0WNKT5knOG4wJw6143JwwgqXkSp42P66ngkZvU-x8LAZFhwLMXUwBbf1qgJLR7Msa-VCSmQokHwCtUpzrWYJckrfFx4DWZgdoiDMk1PsdpOzLHpnQ151zkCAUVMz3GGKthUw3hd4EC_lp88iZIcOzu_ms-fru7Zer94ubz9cfri5vFpbL6sE5YqlSitBeUmvMspeud9BZ07FOStUycMwq6noKivKOEOEMpVYyjk0vOTtr3hx1t1M3Qm_h1s6gt8mPJu11NF7_eRP8Wq_iTgtFBMesCry6E0jx21SN69FnC8NgAsQpa0qXYrnEFMv_QBlRhHAhKvryL3QTpxTqT1SqpaoqHqjXR6p2KecE7v7dBOvbAOgaAH0IQGVf_G70nvzV8QpcHIHZD7D_t5L-ePnpKPkT97W-Ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252988066</pqid></control><display><type>article</type><title>Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, W. ; Ma, C. ; Xie, P. ; Zhu, Q. ; Wang, X. ; Yin, Y. ; Kong, X.</creator><creatorcontrib>Zhang, W. ; Ma, C. ; Xie, P. ; Zhu, Q. ; Wang, X. ; Yin, Y. ; Kong, X.</creatorcontrib><description>Aim
Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets.
Methods and Results
We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA sequencing. The results showed that IUGR piglets had a decreased alpha diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age, Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at 21 days of age; whereas they had higher abundances of Proteobacteria and Pasteurella in the ileum at 21 days of age and Escherichia–Shigella in the jejunum at 28 days of age. Correlation analysis showed that Bacteroides, Oscillibacter and Ruminococcaceae_UCG‐002 compositions were positively associated with the body weight (BW) of IUGR piglets, nevertheless Proteobacteria and Escherichia–Shigella relative abundances were negatively correlated with the BW of IUGR piglets. Gene function prediction analysis indicated that microbiota‐associated carbohydrate metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and xenobiotics biodegradation and metabolism were downregulated in the IUGR piglets compared to control piglets.
Conclusions
The present study profiled the intestinal microbiota of newborn piglets with IUGR and the newborn IUGR piglets have lower diversity and different taxonomic abundances. Alterations in the abundances of Bacteroidetes, Bacteroides, Proteobacteria Escherichia–Shigella and Pasteurella may be involved in nutrient digestion and absorption, as well as the potential mechanisms connecting to the growth and development of IUGR in mammals.
Significance and Impact of the Study
The small intestinal microbiota were highly shaped in the IUGR piglets, which might further mediate the growth and development of IUGR piglets; and the gut microbiota could serve as a potential target for IUGR treatment.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.14304</identifier><identifier>PMID: 31077497</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>absorption ; Abundance ; Age ; amino acid metabolism ; Amino acids ; Animals ; Animals, Newborn ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacteroides ; Bacteroidetes ; Biodegradation ; Biosynthesis ; Body Weight ; Carbohydrate metabolism ; Carbohydrates ; Coliforms ; Correlation analysis ; Digestive system ; diversity ; Escherichia ; Fetal Growth Retardation - microbiology ; Fetal Growth Retardation - veterinary ; Firmicutes ; Gastrointestinal Microbiome ; Gastrointestinal tract ; gene expression regulation ; genes ; Glycan ; Growth rate ; growth retardation ; gut microbiota ; Identification methods ; Ileum ; Ileum - microbiology ; Intestinal microflora ; intestinal microorganisms ; Intestine ; intrauterine growth restriction ; Jejunum ; Jejunum - microbiology ; Lipid metabolism ; Lipids ; Mammals ; Metabolism ; Microbiota ; neonates ; Original ; Pasteurella ; piglets ; prediction ; Proteobacteria ; ribosomal RNA ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; sequence analysis ; Shigella ; small intestine ; species diversity ; Swine ; Swine Diseases - microbiology ; Taxonomy ; Xenobiotics</subject><ispartof>Journal of applied microbiology, 2019-08, Vol.127 (2), p.354-369</ispartof><rights>2019 The Society for Applied Microbiology</rights><rights>2019 The Society for Applied Microbiology.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 The Authors. published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4764-ff1c299912d72caa8d7fdfebcab3b77953ef3c92fd2e924b116fa22c7340ad743</citedby><cites>FETCH-LOGICAL-c4764-ff1c299912d72caa8d7fdfebcab3b77953ef3c92fd2e924b116fa22c7340ad743</cites><orcidid>0000-0001-8034-6682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.14304$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.14304$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31077497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, W.</creatorcontrib><creatorcontrib>Ma, C.</creatorcontrib><creatorcontrib>Xie, P.</creatorcontrib><creatorcontrib>Zhu, Q.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Yin, Y.</creatorcontrib><creatorcontrib>Kong, X.</creatorcontrib><title>Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aim
Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets.
Methods and Results
We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA sequencing. The results showed that IUGR piglets had a decreased alpha diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age, Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at 21 days of age; whereas they had higher abundances of Proteobacteria and Pasteurella in the ileum at 21 days of age and Escherichia–Shigella in the jejunum at 28 days of age. Correlation analysis showed that Bacteroides, Oscillibacter and Ruminococcaceae_UCG‐002 compositions were positively associated with the body weight (BW) of IUGR piglets, nevertheless Proteobacteria and Escherichia–Shigella relative abundances were negatively correlated with the BW of IUGR piglets. Gene function prediction analysis indicated that microbiota‐associated carbohydrate metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and xenobiotics biodegradation and metabolism were downregulated in the IUGR piglets compared to control piglets.
Conclusions
The present study profiled the intestinal microbiota of newborn piglets with IUGR and the newborn IUGR piglets have lower diversity and different taxonomic abundances. Alterations in the abundances of Bacteroidetes, Bacteroides, Proteobacteria Escherichia–Shigella and Pasteurella may be involved in nutrient digestion and absorption, as well as the potential mechanisms connecting to the growth and development of IUGR in mammals.
Significance and Impact of the Study
The small intestinal microbiota were highly shaped in the IUGR piglets, which might further mediate the growth and development of IUGR piglets; and the gut microbiota could serve as a potential target for IUGR treatment.</description><subject>absorption</subject><subject>Abundance</subject><subject>Age</subject><subject>amino acid metabolism</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteroides</subject><subject>Bacteroidetes</subject><subject>Biodegradation</subject><subject>Biosynthesis</subject><subject>Body Weight</subject><subject>Carbohydrate metabolism</subject><subject>Carbohydrates</subject><subject>Coliforms</subject><subject>Correlation analysis</subject><subject>Digestive system</subject><subject>diversity</subject><subject>Escherichia</subject><subject>Fetal Growth Retardation - microbiology</subject><subject>Fetal Growth Retardation - veterinary</subject><subject>Firmicutes</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal tract</subject><subject>gene expression regulation</subject><subject>genes</subject><subject>Glycan</subject><subject>Growth rate</subject><subject>growth retardation</subject><subject>gut microbiota</subject><subject>Identification methods</subject><subject>Ileum</subject><subject>Ileum - microbiology</subject><subject>Intestinal microflora</subject><subject>intestinal microorganisms</subject><subject>Intestine</subject><subject>intrauterine growth restriction</subject><subject>Jejunum</subject><subject>Jejunum - microbiology</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Mammals</subject><subject>Metabolism</subject><subject>Microbiota</subject><subject>neonates</subject><subject>Original</subject><subject>Pasteurella</subject><subject>piglets</subject><subject>prediction</subject><subject>Proteobacteria</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>sequence analysis</subject><subject>Shigella</subject><subject>small intestine</subject><subject>species diversity</subject><subject>Swine</subject><subject>Swine Diseases - microbiology</subject><subject>Taxonomy</subject><subject>Xenobiotics</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqNkktvEzEUhUcIREthwR9AltjAIq1fY8cbpKqCAipiA2vL47lOHM3YwfZkyIbfjpuUCpCQ8MavT-f6-J6meU7wOanjYmPGc8IZ5g-aU8JEu6BC0oeHNV-0WNKT5knOG4wJw6143JwwgqXkSp42P66ngkZvU-x8LAZFhwLMXUwBbf1qgJLR7Msa-VCSmQokHwCtUpzrWYJckrfFx4DWZgdoiDMk1PsdpOzLHpnQ151zkCAUVMz3GGKthUw3hd4EC_lp88iZIcOzu_ms-fru7Zer94ubz9cfri5vFpbL6sE5YqlSitBeUmvMspeud9BZ07FOStUycMwq6noKivKOEOEMpVYyjk0vOTtr3hx1t1M3Qm_h1s6gt8mPJu11NF7_eRP8Wq_iTgtFBMesCry6E0jx21SN69FnC8NgAsQpa0qXYrnEFMv_QBlRhHAhKvryL3QTpxTqT1SqpaoqHqjXR6p2KecE7v7dBOvbAOgaAH0IQGVf_G70nvzV8QpcHIHZD7D_t5L-ePnpKPkT97W-Ng</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Zhang, W.</creator><creator>Ma, C.</creator><creator>Xie, P.</creator><creator>Zhu, Q.</creator><creator>Wang, X.</creator><creator>Yin, Y.</creator><creator>Kong, X.</creator><general>Oxford University Press</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8034-6682</orcidid></search><sort><creationdate>201908</creationdate><title>Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances</title><author>Zhang, W. ; Ma, C. ; Xie, P. ; Zhu, Q. ; Wang, X. ; Yin, Y. ; Kong, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-ff1c299912d72caa8d7fdfebcab3b77953ef3c92fd2e924b116fa22c7340ad743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>absorption</topic><topic>Abundance</topic><topic>Age</topic><topic>amino acid metabolism</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteroides</topic><topic>Bacteroidetes</topic><topic>Biodegradation</topic><topic>Biosynthesis</topic><topic>Body Weight</topic><topic>Carbohydrate metabolism</topic><topic>Carbohydrates</topic><topic>Coliforms</topic><topic>Correlation analysis</topic><topic>Digestive system</topic><topic>diversity</topic><topic>Escherichia</topic><topic>Fetal Growth Retardation - microbiology</topic><topic>Fetal Growth Retardation - veterinary</topic><topic>Firmicutes</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal tract</topic><topic>gene expression regulation</topic><topic>genes</topic><topic>Glycan</topic><topic>Growth rate</topic><topic>growth retardation</topic><topic>gut microbiota</topic><topic>Identification methods</topic><topic>Ileum</topic><topic>Ileum - microbiology</topic><topic>Intestinal microflora</topic><topic>intestinal microorganisms</topic><topic>Intestine</topic><topic>intrauterine growth restriction</topic><topic>Jejunum</topic><topic>Jejunum - microbiology</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Mammals</topic><topic>Metabolism</topic><topic>Microbiota</topic><topic>neonates</topic><topic>Original</topic><topic>Pasteurella</topic><topic>piglets</topic><topic>prediction</topic><topic>Proteobacteria</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>sequence analysis</topic><topic>Shigella</topic><topic>small intestine</topic><topic>species diversity</topic><topic>Swine</topic><topic>Swine Diseases - microbiology</topic><topic>Taxonomy</topic><topic>Xenobiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, W.</creatorcontrib><creatorcontrib>Ma, C.</creatorcontrib><creatorcontrib>Xie, P.</creatorcontrib><creatorcontrib>Zhu, Q.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Yin, Y.</creatorcontrib><creatorcontrib>Kong, X.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, W.</au><au>Ma, C.</au><au>Xie, P.</au><au>Zhu, Q.</au><au>Wang, X.</au><au>Yin, Y.</au><au>Kong, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2019-08</date><risdate>2019</risdate><volume>127</volume><issue>2</issue><spage>354</spage><epage>369</epage><pages>354-369</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aim
Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets.
Methods and Results
We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA sequencing. The results showed that IUGR piglets had a decreased alpha diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age, Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at 21 days of age; whereas they had higher abundances of Proteobacteria and Pasteurella in the ileum at 21 days of age and Escherichia–Shigella in the jejunum at 28 days of age. Correlation analysis showed that Bacteroides, Oscillibacter and Ruminococcaceae_UCG‐002 compositions were positively associated with the body weight (BW) of IUGR piglets, nevertheless Proteobacteria and Escherichia–Shigella relative abundances were negatively correlated with the BW of IUGR piglets. Gene function prediction analysis indicated that microbiota‐associated carbohydrate metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and xenobiotics biodegradation and metabolism were downregulated in the IUGR piglets compared to control piglets.
Conclusions
The present study profiled the intestinal microbiota of newborn piglets with IUGR and the newborn IUGR piglets have lower diversity and different taxonomic abundances. Alterations in the abundances of Bacteroidetes, Bacteroides, Proteobacteria Escherichia–Shigella and Pasteurella may be involved in nutrient digestion and absorption, as well as the potential mechanisms connecting to the growth and development of IUGR in mammals.
Significance and Impact of the Study
The small intestinal microbiota were highly shaped in the IUGR piglets, which might further mediate the growth and development of IUGR piglets; and the gut microbiota could serve as a potential target for IUGR treatment.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31077497</pmid><doi>10.1111/jam.14304</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8034-6682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5072 |
ispartof | Journal of applied microbiology, 2019-08, Vol.127 (2), p.354-369 |
issn | 1364-5072 1365-2672 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6916403 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | absorption Abundance Age amino acid metabolism Amino acids Animals Animals, Newborn Bacteria Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacteroides Bacteroidetes Biodegradation Biosynthesis Body Weight Carbohydrate metabolism Carbohydrates Coliforms Correlation analysis Digestive system diversity Escherichia Fetal Growth Retardation - microbiology Fetal Growth Retardation - veterinary Firmicutes Gastrointestinal Microbiome Gastrointestinal tract gene expression regulation genes Glycan Growth rate growth retardation gut microbiota Identification methods Ileum Ileum - microbiology Intestinal microflora intestinal microorganisms Intestine intrauterine growth restriction Jejunum Jejunum - microbiology Lipid metabolism Lipids Mammals Metabolism Microbiota neonates Original Pasteurella piglets prediction Proteobacteria ribosomal RNA RNA, Ribosomal, 16S - genetics rRNA 16S sequence analysis Shigella small intestine species diversity Swine Swine Diseases - microbiology Taxonomy Xenobiotics |
title | Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gut%20microbiota%20of%20newborn%20piglets%20with%20intrauterine%20growth%20restriction%20have%20lower%20diversity%20and%20different%20taxonomic%20abundances&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Zhang,%20W.&rft.date=2019-08&rft.volume=127&rft.issue=2&rft.spage=354&rft.epage=369&rft.pages=354-369&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/jam.14304&rft_dat=%3Cproquest_pubme%3E2231911466%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252988066&rft_id=info:pmid/31077497&rfr_iscdi=true |