Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances

Aim Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets. Methods and Results We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2019-08, Vol.127 (2), p.354-369
Hauptverfasser: Zhang, W., Ma, C., Xie, P., Zhu, Q., Wang, X., Yin, Y., Kong, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 2
container_start_page 354
container_title Journal of applied microbiology
container_volume 127
creator Zhang, W.
Ma, C.
Xie, P.
Zhu, Q.
Wang, X.
Yin, Y.
Kong, X.
description Aim Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets. Methods and Results We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA sequencing. The results showed that IUGR piglets had a decreased alpha diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age, Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at 21 days of age; whereas they had higher abundances of Proteobacteria and Pasteurella in the ileum at 21 days of age and Escherichia–Shigella in the jejunum at 28 days of age. Correlation analysis showed that Bacteroides, Oscillibacter and Ruminococcaceae_UCG‐002 compositions were positively associated with the body weight (BW) of IUGR piglets, nevertheless Proteobacteria and Escherichia–Shigella relative abundances were negatively correlated with the BW of IUGR piglets. Gene function prediction analysis indicated that microbiota‐associated carbohydrate metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and xenobiotics biodegradation and metabolism were downregulated in the IUGR piglets compared to control piglets. Conclusions The present study profiled the intestinal microbiota of newborn piglets with IUGR and the newborn IUGR piglets have lower diversity and different taxonomic abundances. Alterations in the abundances of Bacteroidetes, Bacteroides, Proteobacteria Escherichia–Shigella and Pasteurella may be involved in nutrient digestion and absorption, as well as the potential mechanisms connecting to the growth and development of IUGR in mammals. Significance and Impact of the Study The small intestinal microbiota were highly shaped in the IUGR piglets, which might further mediate the growth and development of IUGR piglets; and the gut microbiota could serve as a potential target for IUGR treatment.
doi_str_mv 10.1111/jam.14304
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6916403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231911466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-ff1c299912d72caa8d7fdfebcab3b77953ef3c92fd2e924b116fa22c7340ad743</originalsourceid><addsrcrecordid>eNqNkktvEzEUhUcIREthwR9AltjAIq1fY8cbpKqCAipiA2vL47lOHM3YwfZkyIbfjpuUCpCQ8MavT-f6-J6meU7wOanjYmPGc8IZ5g-aU8JEu6BC0oeHNV-0WNKT5knOG4wJw6143JwwgqXkSp42P66ngkZvU-x8LAZFhwLMXUwBbf1qgJLR7Msa-VCSmQokHwCtUpzrWYJckrfFx4DWZgdoiDMk1PsdpOzLHpnQ151zkCAUVMz3GGKthUw3hd4EC_lp88iZIcOzu_ms-fru7Zer94ubz9cfri5vFpbL6sE5YqlSitBeUmvMspeud9BZ07FOStUycMwq6noKivKOEOEMpVYyjk0vOTtr3hx1t1M3Qm_h1s6gt8mPJu11NF7_eRP8Wq_iTgtFBMesCry6E0jx21SN69FnC8NgAsQpa0qXYrnEFMv_QBlRhHAhKvryL3QTpxTqT1SqpaoqHqjXR6p2KecE7v7dBOvbAOgaAH0IQGVf_G70nvzV8QpcHIHZD7D_t5L-ePnpKPkT97W-Ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252988066</pqid></control><display><type>article</type><title>Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, W. ; Ma, C. ; Xie, P. ; Zhu, Q. ; Wang, X. ; Yin, Y. ; Kong, X.</creator><creatorcontrib>Zhang, W. ; Ma, C. ; Xie, P. ; Zhu, Q. ; Wang, X. ; Yin, Y. ; Kong, X.</creatorcontrib><description>Aim Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets. Methods and Results We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA sequencing. The results showed that IUGR piglets had a decreased alpha diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age, Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at 21 days of age; whereas they had higher abundances of Proteobacteria and Pasteurella in the ileum at 21 days of age and Escherichia–Shigella in the jejunum at 28 days of age. Correlation analysis showed that Bacteroides, Oscillibacter and Ruminococcaceae_UCG‐002 compositions were positively associated with the body weight (BW) of IUGR piglets, nevertheless Proteobacteria and Escherichia–Shigella relative abundances were negatively correlated with the BW of IUGR piglets. Gene function prediction analysis indicated that microbiota‐associated carbohydrate metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and xenobiotics biodegradation and metabolism were downregulated in the IUGR piglets compared to control piglets. Conclusions The present study profiled the intestinal microbiota of newborn piglets with IUGR and the newborn IUGR piglets have lower diversity and different taxonomic abundances. Alterations in the abundances of Bacteroidetes, Bacteroides, Proteobacteria Escherichia–Shigella and Pasteurella may be involved in nutrient digestion and absorption, as well as the potential mechanisms connecting to the growth and development of IUGR in mammals. Significance and Impact of the Study The small intestinal microbiota were highly shaped in the IUGR piglets, which might further mediate the growth and development of IUGR piglets; and the gut microbiota could serve as a potential target for IUGR treatment.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.14304</identifier><identifier>PMID: 31077497</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>absorption ; Abundance ; Age ; amino acid metabolism ; Amino acids ; Animals ; Animals, Newborn ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacteroides ; Bacteroidetes ; Biodegradation ; Biosynthesis ; Body Weight ; Carbohydrate metabolism ; Carbohydrates ; Coliforms ; Correlation analysis ; Digestive system ; diversity ; Escherichia ; Fetal Growth Retardation - microbiology ; Fetal Growth Retardation - veterinary ; Firmicutes ; Gastrointestinal Microbiome ; Gastrointestinal tract ; gene expression regulation ; genes ; Glycan ; Growth rate ; growth retardation ; gut microbiota ; Identification methods ; Ileum ; Ileum - microbiology ; Intestinal microflora ; intestinal microorganisms ; Intestine ; intrauterine growth restriction ; Jejunum ; Jejunum - microbiology ; Lipid metabolism ; Lipids ; Mammals ; Metabolism ; Microbiota ; neonates ; Original ; Pasteurella ; piglets ; prediction ; Proteobacteria ; ribosomal RNA ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; sequence analysis ; Shigella ; small intestine ; species diversity ; Swine ; Swine Diseases - microbiology ; Taxonomy ; Xenobiotics</subject><ispartof>Journal of applied microbiology, 2019-08, Vol.127 (2), p.354-369</ispartof><rights>2019 The Society for Applied Microbiology</rights><rights>2019 The Society for Applied Microbiology.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4764-ff1c299912d72caa8d7fdfebcab3b77953ef3c92fd2e924b116fa22c7340ad743</citedby><cites>FETCH-LOGICAL-c4764-ff1c299912d72caa8d7fdfebcab3b77953ef3c92fd2e924b116fa22c7340ad743</cites><orcidid>0000-0001-8034-6682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.14304$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.14304$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31077497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, W.</creatorcontrib><creatorcontrib>Ma, C.</creatorcontrib><creatorcontrib>Xie, P.</creatorcontrib><creatorcontrib>Zhu, Q.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Yin, Y.</creatorcontrib><creatorcontrib>Kong, X.</creatorcontrib><title>Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aim Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets. Methods and Results We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA sequencing. The results showed that IUGR piglets had a decreased alpha diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age, Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at 21 days of age; whereas they had higher abundances of Proteobacteria and Pasteurella in the ileum at 21 days of age and Escherichia–Shigella in the jejunum at 28 days of age. Correlation analysis showed that Bacteroides, Oscillibacter and Ruminococcaceae_UCG‐002 compositions were positively associated with the body weight (BW) of IUGR piglets, nevertheless Proteobacteria and Escherichia–Shigella relative abundances were negatively correlated with the BW of IUGR piglets. Gene function prediction analysis indicated that microbiota‐associated carbohydrate metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and xenobiotics biodegradation and metabolism were downregulated in the IUGR piglets compared to control piglets. Conclusions The present study profiled the intestinal microbiota of newborn piglets with IUGR and the newborn IUGR piglets have lower diversity and different taxonomic abundances. Alterations in the abundances of Bacteroidetes, Bacteroides, Proteobacteria Escherichia–Shigella and Pasteurella may be involved in nutrient digestion and absorption, as well as the potential mechanisms connecting to the growth and development of IUGR in mammals. Significance and Impact of the Study The small intestinal microbiota were highly shaped in the IUGR piglets, which might further mediate the growth and development of IUGR piglets; and the gut microbiota could serve as a potential target for IUGR treatment.</description><subject>absorption</subject><subject>Abundance</subject><subject>Age</subject><subject>amino acid metabolism</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacteroides</subject><subject>Bacteroidetes</subject><subject>Biodegradation</subject><subject>Biosynthesis</subject><subject>Body Weight</subject><subject>Carbohydrate metabolism</subject><subject>Carbohydrates</subject><subject>Coliforms</subject><subject>Correlation analysis</subject><subject>Digestive system</subject><subject>diversity</subject><subject>Escherichia</subject><subject>Fetal Growth Retardation - microbiology</subject><subject>Fetal Growth Retardation - veterinary</subject><subject>Firmicutes</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal tract</subject><subject>gene expression regulation</subject><subject>genes</subject><subject>Glycan</subject><subject>Growth rate</subject><subject>growth retardation</subject><subject>gut microbiota</subject><subject>Identification methods</subject><subject>Ileum</subject><subject>Ileum - microbiology</subject><subject>Intestinal microflora</subject><subject>intestinal microorganisms</subject><subject>Intestine</subject><subject>intrauterine growth restriction</subject><subject>Jejunum</subject><subject>Jejunum - microbiology</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Mammals</subject><subject>Metabolism</subject><subject>Microbiota</subject><subject>neonates</subject><subject>Original</subject><subject>Pasteurella</subject><subject>piglets</subject><subject>prediction</subject><subject>Proteobacteria</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>sequence analysis</subject><subject>Shigella</subject><subject>small intestine</subject><subject>species diversity</subject><subject>Swine</subject><subject>Swine Diseases - microbiology</subject><subject>Taxonomy</subject><subject>Xenobiotics</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqNkktvEzEUhUcIREthwR9AltjAIq1fY8cbpKqCAipiA2vL47lOHM3YwfZkyIbfjpuUCpCQ8MavT-f6-J6meU7wOanjYmPGc8IZ5g-aU8JEu6BC0oeHNV-0WNKT5knOG4wJw6143JwwgqXkSp42P66ngkZvU-x8LAZFhwLMXUwBbf1qgJLR7Msa-VCSmQokHwCtUpzrWYJckrfFx4DWZgdoiDMk1PsdpOzLHpnQ151zkCAUVMz3GGKthUw3hd4EC_lp88iZIcOzu_ms-fru7Zer94ubz9cfri5vFpbL6sE5YqlSitBeUmvMspeud9BZ07FOStUycMwq6noKivKOEOEMpVYyjk0vOTtr3hx1t1M3Qm_h1s6gt8mPJu11NF7_eRP8Wq_iTgtFBMesCry6E0jx21SN69FnC8NgAsQpa0qXYrnEFMv_QBlRhHAhKvryL3QTpxTqT1SqpaoqHqjXR6p2KecE7v7dBOvbAOgaAH0IQGVf_G70nvzV8QpcHIHZD7D_t5L-ePnpKPkT97W-Ng</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Zhang, W.</creator><creator>Ma, C.</creator><creator>Xie, P.</creator><creator>Zhu, Q.</creator><creator>Wang, X.</creator><creator>Yin, Y.</creator><creator>Kong, X.</creator><general>Oxford University Press</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8034-6682</orcidid></search><sort><creationdate>201908</creationdate><title>Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances</title><author>Zhang, W. ; Ma, C. ; Xie, P. ; Zhu, Q. ; Wang, X. ; Yin, Y. ; Kong, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-ff1c299912d72caa8d7fdfebcab3b77953ef3c92fd2e924b116fa22c7340ad743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>absorption</topic><topic>Abundance</topic><topic>Age</topic><topic>amino acid metabolism</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacteroides</topic><topic>Bacteroidetes</topic><topic>Biodegradation</topic><topic>Biosynthesis</topic><topic>Body Weight</topic><topic>Carbohydrate metabolism</topic><topic>Carbohydrates</topic><topic>Coliforms</topic><topic>Correlation analysis</topic><topic>Digestive system</topic><topic>diversity</topic><topic>Escherichia</topic><topic>Fetal Growth Retardation - microbiology</topic><topic>Fetal Growth Retardation - veterinary</topic><topic>Firmicutes</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal tract</topic><topic>gene expression regulation</topic><topic>genes</topic><topic>Glycan</topic><topic>Growth rate</topic><topic>growth retardation</topic><topic>gut microbiota</topic><topic>Identification methods</topic><topic>Ileum</topic><topic>Ileum - microbiology</topic><topic>Intestinal microflora</topic><topic>intestinal microorganisms</topic><topic>Intestine</topic><topic>intrauterine growth restriction</topic><topic>Jejunum</topic><topic>Jejunum - microbiology</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Mammals</topic><topic>Metabolism</topic><topic>Microbiota</topic><topic>neonates</topic><topic>Original</topic><topic>Pasteurella</topic><topic>piglets</topic><topic>prediction</topic><topic>Proteobacteria</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>sequence analysis</topic><topic>Shigella</topic><topic>small intestine</topic><topic>species diversity</topic><topic>Swine</topic><topic>Swine Diseases - microbiology</topic><topic>Taxonomy</topic><topic>Xenobiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, W.</creatorcontrib><creatorcontrib>Ma, C.</creatorcontrib><creatorcontrib>Xie, P.</creatorcontrib><creatorcontrib>Zhu, Q.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Yin, Y.</creatorcontrib><creatorcontrib>Kong, X.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, W.</au><au>Ma, C.</au><au>Xie, P.</au><au>Zhu, Q.</au><au>Wang, X.</au><au>Yin, Y.</au><au>Kong, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2019-08</date><risdate>2019</risdate><volume>127</volume><issue>2</issue><spage>354</spage><epage>369</epage><pages>354-369</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aim Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets. Methods and Results We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA sequencing. The results showed that IUGR piglets had a decreased alpha diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age, Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at 21 days of age; whereas they had higher abundances of Proteobacteria and Pasteurella in the ileum at 21 days of age and Escherichia–Shigella in the jejunum at 28 days of age. Correlation analysis showed that Bacteroides, Oscillibacter and Ruminococcaceae_UCG‐002 compositions were positively associated with the body weight (BW) of IUGR piglets, nevertheless Proteobacteria and Escherichia–Shigella relative abundances were negatively correlated with the BW of IUGR piglets. Gene function prediction analysis indicated that microbiota‐associated carbohydrate metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and xenobiotics biodegradation and metabolism were downregulated in the IUGR piglets compared to control piglets. Conclusions The present study profiled the intestinal microbiota of newborn piglets with IUGR and the newborn IUGR piglets have lower diversity and different taxonomic abundances. Alterations in the abundances of Bacteroidetes, Bacteroides, Proteobacteria Escherichia–Shigella and Pasteurella may be involved in nutrient digestion and absorption, as well as the potential mechanisms connecting to the growth and development of IUGR in mammals. Significance and Impact of the Study The small intestinal microbiota were highly shaped in the IUGR piglets, which might further mediate the growth and development of IUGR piglets; and the gut microbiota could serve as a potential target for IUGR treatment.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31077497</pmid><doi>10.1111/jam.14304</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8034-6682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2019-08, Vol.127 (2), p.354-369
issn 1364-5072
1365-2672
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6916403
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects absorption
Abundance
Age
amino acid metabolism
Amino acids
Animals
Animals, Newborn
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Bacteroides
Bacteroidetes
Biodegradation
Biosynthesis
Body Weight
Carbohydrate metabolism
Carbohydrates
Coliforms
Correlation analysis
Digestive system
diversity
Escherichia
Fetal Growth Retardation - microbiology
Fetal Growth Retardation - veterinary
Firmicutes
Gastrointestinal Microbiome
Gastrointestinal tract
gene expression regulation
genes
Glycan
Growth rate
growth retardation
gut microbiota
Identification methods
Ileum
Ileum - microbiology
Intestinal microflora
intestinal microorganisms
Intestine
intrauterine growth restriction
Jejunum
Jejunum - microbiology
Lipid metabolism
Lipids
Mammals
Metabolism
Microbiota
neonates
Original
Pasteurella
piglets
prediction
Proteobacteria
ribosomal RNA
RNA, Ribosomal, 16S - genetics
rRNA 16S
sequence analysis
Shigella
small intestine
species diversity
Swine
Swine Diseases - microbiology
Taxonomy
Xenobiotics
title Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gut%20microbiota%20of%20newborn%20piglets%20with%20intrauterine%20growth%20restriction%20have%20lower%20diversity%20and%20different%20taxonomic%20abundances&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Zhang,%20W.&rft.date=2019-08&rft.volume=127&rft.issue=2&rft.spage=354&rft.epage=369&rft.pages=354-369&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/jam.14304&rft_dat=%3Cproquest_pubme%3E2231911466%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252988066&rft_id=info:pmid/31077497&rfr_iscdi=true