Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries

Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-11, Vol.9 (11), p.1612
Hauptverfasser: Kim, Mi-Jin, Yang, Kwansoo, Kang, Hui-Ju, Hwang, Hyun Jin, Won, Jong Chan, Kim, Yun Ho, Jun, Young-Si
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1612
container_title Nanomaterials (Basel, Switzerland)
container_volume 9
creator Kim, Mi-Jin
Yang, Kwansoo
Kang, Hui-Ju
Hwang, Hyun Jin
Won, Jong Chan
Kim, Yun Ho
Jun, Young-Si
description Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitigate these issues, we utilized polyimide functionalized glass microfibers (PI-GF) as a functional separator. The water-soluble precursor enabled the formation of a homogenous thin coating on the surface of the glass microfiber (GF) membrane with the potential to scale and fine-tune: the PI-GF was prepared by simple dipping of commercial GF into an aqueous solution of poly(amic acid), (PAA), followed by thermal imidization. We found that a tiny amount of polyimide (PI) of 0.5 wt.% is more than enough to endow the GF separator with useful capabilities, both retarding polysulfide migration. Combined with a free-standing microporous carbon cloth-sulphur composite cathode, the PI-GF-based LSB cell exhibits a stable cycling over 120 cycles at a current density of 1 mA/cm and an areal sulphur loading of 2 mgS/cm with only a marginal capacity loss of 0.099%/cycle. This corresponds to an improvement in cycle stability by 200%, specific capacity by 16.4%, and capacity loss per cycle by 45% as compared to those of the cell without PI coating. Our study revealed that a simple but synergistic combination of porous carbon supporting material and functional separator enabled us to achieve high-performance LSBs, but could also pave the way for the development of practical LSBs using the commercially viable method without using complicated synthesis or harmful and expensive chemicals.
doi_str_mv 10.3390/nano9111612
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6915437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548997854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-95e05a5d83c8f73183e985fd05bb06d22e611250fb39ccdf58b2b04c95c63e783</originalsourceid><addsrcrecordid>eNpdkd1rFDEUxYNYbFn75LsEfBFkNB-TmeRF0EXbwpYWWp9DJnPTTclM1iRT7H9vSmtZGwi5cH85nHsPQu8o-cy5Il9mM0dFKe0oe4WOGOlV0ypFX-_Vh-g451tSj6JcCv4GHXLadx1r-RH6cxnDvZ_8CM06mgIjPgkmZ3zubYrOD5CwyfgByktwFcOXkKbmCgLY4u8AX8HOJFNiwq7eU3-zbSpR68nMFvDGl61f6ocl7LZLwt9NKZA85LfowJmQ4fjpXaFfP39cr0-bzcXJ2frbprEtUaVRAogwYpTcStdzKjkoKdxIxDCQbmQMOkqZIG7gytrRCTmwgbRWCdtx6CVfoa-PurtlmGC0MJdkgt4lP5l0r6Px-v_O7Lf6Jt7pTlHR8r4KfHwSSPH3ArnoyWcLIZgZ4pI1q6Z63rO62RX68AK9jUua63iaiVYq1csquUKfHqm64ZwTuGczlOiHUPVeqJV-v-__mf0XIf8LHX2fSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548997854</pqid></control><display><type>article</type><title>Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Kim, Mi-Jin ; Yang, Kwansoo ; Kang, Hui-Ju ; Hwang, Hyun Jin ; Won, Jong Chan ; Kim, Yun Ho ; Jun, Young-Si</creator><creatorcontrib>Kim, Mi-Jin ; Yang, Kwansoo ; Kang, Hui-Ju ; Hwang, Hyun Jin ; Won, Jong Chan ; Kim, Yun Ho ; Jun, Young-Si</creatorcontrib><description>Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitigate these issues, we utilized polyimide functionalized glass microfibers (PI-GF) as a functional separator. The water-soluble precursor enabled the formation of a homogenous thin coating on the surface of the glass microfiber (GF) membrane with the potential to scale and fine-tune: the PI-GF was prepared by simple dipping of commercial GF into an aqueous solution of poly(amic acid), (PAA), followed by thermal imidization. We found that a tiny amount of polyimide (PI) of 0.5 wt.% is more than enough to endow the GF separator with useful capabilities, both retarding polysulfide migration. Combined with a free-standing microporous carbon cloth-sulphur composite cathode, the PI-GF-based LSB cell exhibits a stable cycling over 120 cycles at a current density of 1 mA/cm and an areal sulphur loading of 2 mgS/cm with only a marginal capacity loss of 0.099%/cycle. This corresponds to an improvement in cycle stability by 200%, specific capacity by 16.4%, and capacity loss per cycle by 45% as compared to those of the cell without PI coating. Our study revealed that a simple but synergistic combination of porous carbon supporting material and functional separator enabled us to achieve high-performance LSBs, but could also pave the way for the development of practical LSBs using the commercially viable method without using complicated synthesis or harmful and expensive chemicals.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano9111612</identifier><identifier>PMID: 31766243</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aqueous solutions ; Carbon ; Cloth ; Coatings ; Efficiency ; Electrodes ; Electrolytes ; Energy industry ; Lithium ; Lithium sulfur batteries ; Microfibers ; Polymers ; Polysulfides ; Porous materials ; Separators ; Specific capacity ; Sulfur</subject><ispartof>Nanomaterials (Basel, Switzerland), 2019-11, Vol.9 (11), p.1612</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-95e05a5d83c8f73183e985fd05bb06d22e611250fb39ccdf58b2b04c95c63e783</citedby><cites>FETCH-LOGICAL-c409t-95e05a5d83c8f73183e985fd05bb06d22e611250fb39ccdf58b2b04c95c63e783</cites><orcidid>0000-0002-7157-4920 ; 0000-0001-7163-018X ; 0000-0003-2735-1161 ; 0000-0003-1751-5716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915437/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31766243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Mi-Jin</creatorcontrib><creatorcontrib>Yang, Kwansoo</creatorcontrib><creatorcontrib>Kang, Hui-Ju</creatorcontrib><creatorcontrib>Hwang, Hyun Jin</creatorcontrib><creatorcontrib>Won, Jong Chan</creatorcontrib><creatorcontrib>Kim, Yun Ho</creatorcontrib><creatorcontrib>Jun, Young-Si</creatorcontrib><title>Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitigate these issues, we utilized polyimide functionalized glass microfibers (PI-GF) as a functional separator. The water-soluble precursor enabled the formation of a homogenous thin coating on the surface of the glass microfiber (GF) membrane with the potential to scale and fine-tune: the PI-GF was prepared by simple dipping of commercial GF into an aqueous solution of poly(amic acid), (PAA), followed by thermal imidization. We found that a tiny amount of polyimide (PI) of 0.5 wt.% is more than enough to endow the GF separator with useful capabilities, both retarding polysulfide migration. Combined with a free-standing microporous carbon cloth-sulphur composite cathode, the PI-GF-based LSB cell exhibits a stable cycling over 120 cycles at a current density of 1 mA/cm and an areal sulphur loading of 2 mgS/cm with only a marginal capacity loss of 0.099%/cycle. This corresponds to an improvement in cycle stability by 200%, specific capacity by 16.4%, and capacity loss per cycle by 45% as compared to those of the cell without PI coating. Our study revealed that a simple but synergistic combination of porous carbon supporting material and functional separator enabled us to achieve high-performance LSBs, but could also pave the way for the development of practical LSBs using the commercially viable method without using complicated synthesis or harmful and expensive chemicals.</description><subject>Aqueous solutions</subject><subject>Carbon</subject><subject>Cloth</subject><subject>Coatings</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy industry</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Microfibers</subject><subject>Polymers</subject><subject>Polysulfides</subject><subject>Porous materials</subject><subject>Separators</subject><subject>Specific capacity</subject><subject>Sulfur</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd1rFDEUxYNYbFn75LsEfBFkNB-TmeRF0EXbwpYWWp9DJnPTTclM1iRT7H9vSmtZGwi5cH85nHsPQu8o-cy5Il9mM0dFKe0oe4WOGOlV0ypFX-_Vh-g451tSj6JcCv4GHXLadx1r-RH6cxnDvZ_8CM06mgIjPgkmZ3zubYrOD5CwyfgByktwFcOXkKbmCgLY4u8AX8HOJFNiwq7eU3-zbSpR68nMFvDGl61f6ocl7LZLwt9NKZA85LfowJmQ4fjpXaFfP39cr0-bzcXJ2frbprEtUaVRAogwYpTcStdzKjkoKdxIxDCQbmQMOkqZIG7gytrRCTmwgbRWCdtx6CVfoa-PurtlmGC0MJdkgt4lP5l0r6Px-v_O7Lf6Jt7pTlHR8r4KfHwSSPH3ArnoyWcLIZgZ4pI1q6Z63rO62RX68AK9jUua63iaiVYq1csquUKfHqm64ZwTuGczlOiHUPVeqJV-v-__mf0XIf8LHX2fSg</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Kim, Mi-Jin</creator><creator>Yang, Kwansoo</creator><creator>Kang, Hui-Ju</creator><creator>Hwang, Hyun Jin</creator><creator>Won, Jong Chan</creator><creator>Kim, Yun Ho</creator><creator>Jun, Young-Si</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7157-4920</orcidid><orcidid>https://orcid.org/0000-0001-7163-018X</orcidid><orcidid>https://orcid.org/0000-0003-2735-1161</orcidid><orcidid>https://orcid.org/0000-0003-1751-5716</orcidid></search><sort><creationdate>20191113</creationdate><title>Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries</title><author>Kim, Mi-Jin ; Yang, Kwansoo ; Kang, Hui-Ju ; Hwang, Hyun Jin ; Won, Jong Chan ; Kim, Yun Ho ; Jun, Young-Si</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-95e05a5d83c8f73183e985fd05bb06d22e611250fb39ccdf58b2b04c95c63e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Carbon</topic><topic>Cloth</topic><topic>Coatings</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy industry</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Microfibers</topic><topic>Polymers</topic><topic>Polysulfides</topic><topic>Porous materials</topic><topic>Separators</topic><topic>Specific capacity</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Mi-Jin</creatorcontrib><creatorcontrib>Yang, Kwansoo</creatorcontrib><creatorcontrib>Kang, Hui-Ju</creatorcontrib><creatorcontrib>Hwang, Hyun Jin</creatorcontrib><creatorcontrib>Won, Jong Chan</creatorcontrib><creatorcontrib>Kim, Yun Ho</creatorcontrib><creatorcontrib>Jun, Young-Si</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Mi-Jin</au><au>Yang, Kwansoo</au><au>Kang, Hui-Ju</au><au>Hwang, Hyun Jin</au><au>Won, Jong Chan</au><au>Kim, Yun Ho</au><au>Jun, Young-Si</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2019-11-13</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>1612</spage><pages>1612-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitigate these issues, we utilized polyimide functionalized glass microfibers (PI-GF) as a functional separator. The water-soluble precursor enabled the formation of a homogenous thin coating on the surface of the glass microfiber (GF) membrane with the potential to scale and fine-tune: the PI-GF was prepared by simple dipping of commercial GF into an aqueous solution of poly(amic acid), (PAA), followed by thermal imidization. We found that a tiny amount of polyimide (PI) of 0.5 wt.% is more than enough to endow the GF separator with useful capabilities, both retarding polysulfide migration. Combined with a free-standing microporous carbon cloth-sulphur composite cathode, the PI-GF-based LSB cell exhibits a stable cycling over 120 cycles at a current density of 1 mA/cm and an areal sulphur loading of 2 mgS/cm with only a marginal capacity loss of 0.099%/cycle. This corresponds to an improvement in cycle stability by 200%, specific capacity by 16.4%, and capacity loss per cycle by 45% as compared to those of the cell without PI coating. Our study revealed that a simple but synergistic combination of porous carbon supporting material and functional separator enabled us to achieve high-performance LSBs, but could also pave the way for the development of practical LSBs using the commercially viable method without using complicated synthesis or harmful and expensive chemicals.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31766243</pmid><doi>10.3390/nano9111612</doi><orcidid>https://orcid.org/0000-0002-7157-4920</orcidid><orcidid>https://orcid.org/0000-0001-7163-018X</orcidid><orcidid>https://orcid.org/0000-0003-2735-1161</orcidid><orcidid>https://orcid.org/0000-0003-1751-5716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2019-11, Vol.9 (11), p.1612
issn 2079-4991
2079-4991
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6915437
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Aqueous solutions
Carbon
Cloth
Coatings
Efficiency
Electrodes
Electrolytes
Energy industry
Lithium
Lithium sulfur batteries
Microfibers
Polymers
Polysulfides
Porous materials
Separators
Specific capacity
Sulfur
title Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyimide-Coated%20Glass%20Microfiber%20as%20Polysulfide%20Perm-Selective%20Separator%20for%20High-Performance%20Lithium-Sulphur%20Batteries&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Kim,%20Mi-Jin&rft.date=2019-11-13&rft.volume=9&rft.issue=11&rft.spage=1612&rft.pages=1612-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano9111612&rft_dat=%3Cproquest_pubme%3E2548997854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548997854&rft_id=info:pmid/31766243&rfr_iscdi=true