Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries
Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitig...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2019-11, Vol.9 (11), p.1612 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1612 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 9 |
creator | Kim, Mi-Jin Yang, Kwansoo Kang, Hui-Ju Hwang, Hyun Jin Won, Jong Chan Kim, Yun Ho Jun, Young-Si |
description | Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitigate these issues, we utilized polyimide functionalized glass microfibers (PI-GF) as a functional separator. The water-soluble precursor enabled the formation of a homogenous thin coating on the surface of the glass microfiber (GF) membrane with the potential to scale and fine-tune: the PI-GF was prepared by simple dipping of commercial GF into an aqueous solution of poly(amic acid), (PAA), followed by thermal imidization. We found that a tiny amount of polyimide (PI) of 0.5 wt.% is more than enough to endow the GF separator with useful capabilities, both retarding polysulfide migration. Combined with a free-standing microporous carbon cloth-sulphur composite cathode, the PI-GF-based LSB cell exhibits a stable cycling over 120 cycles at a current density of 1 mA/cm
and an areal sulphur loading of 2 mgS/cm
with only a marginal capacity loss of 0.099%/cycle. This corresponds to an improvement in cycle stability by 200%, specific capacity by 16.4%, and capacity loss per cycle by 45% as compared to those of the cell without PI coating. Our study revealed that a simple but synergistic combination of porous carbon supporting material and functional separator enabled us to achieve high-performance LSBs, but could also pave the way for the development of practical LSBs using the commercially viable method without using complicated synthesis or harmful and expensive chemicals. |
doi_str_mv | 10.3390/nano9111612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6915437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548997854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-95e05a5d83c8f73183e985fd05bb06d22e611250fb39ccdf58b2b04c95c63e783</originalsourceid><addsrcrecordid>eNpdkd1rFDEUxYNYbFn75LsEfBFkNB-TmeRF0EXbwpYWWp9DJnPTTclM1iRT7H9vSmtZGwi5cH85nHsPQu8o-cy5Il9mM0dFKe0oe4WOGOlV0ypFX-_Vh-g451tSj6JcCv4GHXLadx1r-RH6cxnDvZ_8CM06mgIjPgkmZ3zubYrOD5CwyfgByktwFcOXkKbmCgLY4u8AX8HOJFNiwq7eU3-zbSpR68nMFvDGl61f6ocl7LZLwt9NKZA85LfowJmQ4fjpXaFfP39cr0-bzcXJ2frbprEtUaVRAogwYpTcStdzKjkoKdxIxDCQbmQMOkqZIG7gytrRCTmwgbRWCdtx6CVfoa-PurtlmGC0MJdkgt4lP5l0r6Px-v_O7Lf6Jt7pTlHR8r4KfHwSSPH3ArnoyWcLIZgZ4pI1q6Z63rO62RX68AK9jUua63iaiVYq1csquUKfHqm64ZwTuGczlOiHUPVeqJV-v-__mf0XIf8LHX2fSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548997854</pqid></control><display><type>article</type><title>Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Kim, Mi-Jin ; Yang, Kwansoo ; Kang, Hui-Ju ; Hwang, Hyun Jin ; Won, Jong Chan ; Kim, Yun Ho ; Jun, Young-Si</creator><creatorcontrib>Kim, Mi-Jin ; Yang, Kwansoo ; Kang, Hui-Ju ; Hwang, Hyun Jin ; Won, Jong Chan ; Kim, Yun Ho ; Jun, Young-Si</creatorcontrib><description>Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitigate these issues, we utilized polyimide functionalized glass microfibers (PI-GF) as a functional separator. The water-soluble precursor enabled the formation of a homogenous thin coating on the surface of the glass microfiber (GF) membrane with the potential to scale and fine-tune: the PI-GF was prepared by simple dipping of commercial GF into an aqueous solution of poly(amic acid), (PAA), followed by thermal imidization. We found that a tiny amount of polyimide (PI) of 0.5 wt.% is more than enough to endow the GF separator with useful capabilities, both retarding polysulfide migration. Combined with a free-standing microporous carbon cloth-sulphur composite cathode, the PI-GF-based LSB cell exhibits a stable cycling over 120 cycles at a current density of 1 mA/cm
and an areal sulphur loading of 2 mgS/cm
with only a marginal capacity loss of 0.099%/cycle. This corresponds to an improvement in cycle stability by 200%, specific capacity by 16.4%, and capacity loss per cycle by 45% as compared to those of the cell without PI coating. Our study revealed that a simple but synergistic combination of porous carbon supporting material and functional separator enabled us to achieve high-performance LSBs, but could also pave the way for the development of practical LSBs using the commercially viable method without using complicated synthesis or harmful and expensive chemicals.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano9111612</identifier><identifier>PMID: 31766243</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aqueous solutions ; Carbon ; Cloth ; Coatings ; Efficiency ; Electrodes ; Electrolytes ; Energy industry ; Lithium ; Lithium sulfur batteries ; Microfibers ; Polymers ; Polysulfides ; Porous materials ; Separators ; Specific capacity ; Sulfur</subject><ispartof>Nanomaterials (Basel, Switzerland), 2019-11, Vol.9 (11), p.1612</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-95e05a5d83c8f73183e985fd05bb06d22e611250fb39ccdf58b2b04c95c63e783</citedby><cites>FETCH-LOGICAL-c409t-95e05a5d83c8f73183e985fd05bb06d22e611250fb39ccdf58b2b04c95c63e783</cites><orcidid>0000-0002-7157-4920 ; 0000-0001-7163-018X ; 0000-0003-2735-1161 ; 0000-0003-1751-5716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915437/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31766243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Mi-Jin</creatorcontrib><creatorcontrib>Yang, Kwansoo</creatorcontrib><creatorcontrib>Kang, Hui-Ju</creatorcontrib><creatorcontrib>Hwang, Hyun Jin</creatorcontrib><creatorcontrib>Won, Jong Chan</creatorcontrib><creatorcontrib>Kim, Yun Ho</creatorcontrib><creatorcontrib>Jun, Young-Si</creatorcontrib><title>Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitigate these issues, we utilized polyimide functionalized glass microfibers (PI-GF) as a functional separator. The water-soluble precursor enabled the formation of a homogenous thin coating on the surface of the glass microfiber (GF) membrane with the potential to scale and fine-tune: the PI-GF was prepared by simple dipping of commercial GF into an aqueous solution of poly(amic acid), (PAA), followed by thermal imidization. We found that a tiny amount of polyimide (PI) of 0.5 wt.% is more than enough to endow the GF separator with useful capabilities, both retarding polysulfide migration. Combined with a free-standing microporous carbon cloth-sulphur composite cathode, the PI-GF-based LSB cell exhibits a stable cycling over 120 cycles at a current density of 1 mA/cm
and an areal sulphur loading of 2 mgS/cm
with only a marginal capacity loss of 0.099%/cycle. This corresponds to an improvement in cycle stability by 200%, specific capacity by 16.4%, and capacity loss per cycle by 45% as compared to those of the cell without PI coating. Our study revealed that a simple but synergistic combination of porous carbon supporting material and functional separator enabled us to achieve high-performance LSBs, but could also pave the way for the development of practical LSBs using the commercially viable method without using complicated synthesis or harmful and expensive chemicals.</description><subject>Aqueous solutions</subject><subject>Carbon</subject><subject>Cloth</subject><subject>Coatings</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy industry</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Microfibers</subject><subject>Polymers</subject><subject>Polysulfides</subject><subject>Porous materials</subject><subject>Separators</subject><subject>Specific capacity</subject><subject>Sulfur</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd1rFDEUxYNYbFn75LsEfBFkNB-TmeRF0EXbwpYWWp9DJnPTTclM1iRT7H9vSmtZGwi5cH85nHsPQu8o-cy5Il9mM0dFKe0oe4WOGOlV0ypFX-_Vh-g451tSj6JcCv4GHXLadx1r-RH6cxnDvZ_8CM06mgIjPgkmZ3zubYrOD5CwyfgByktwFcOXkKbmCgLY4u8AX8HOJFNiwq7eU3-zbSpR68nMFvDGl61f6ocl7LZLwt9NKZA85LfowJmQ4fjpXaFfP39cr0-bzcXJ2frbprEtUaVRAogwYpTcStdzKjkoKdxIxDCQbmQMOkqZIG7gytrRCTmwgbRWCdtx6CVfoa-PurtlmGC0MJdkgt4lP5l0r6Px-v_O7Lf6Jt7pTlHR8r4KfHwSSPH3ArnoyWcLIZgZ4pI1q6Z63rO62RX68AK9jUua63iaiVYq1csquUKfHqm64ZwTuGczlOiHUPVeqJV-v-__mf0XIf8LHX2fSg</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Kim, Mi-Jin</creator><creator>Yang, Kwansoo</creator><creator>Kang, Hui-Ju</creator><creator>Hwang, Hyun Jin</creator><creator>Won, Jong Chan</creator><creator>Kim, Yun Ho</creator><creator>Jun, Young-Si</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7157-4920</orcidid><orcidid>https://orcid.org/0000-0001-7163-018X</orcidid><orcidid>https://orcid.org/0000-0003-2735-1161</orcidid><orcidid>https://orcid.org/0000-0003-1751-5716</orcidid></search><sort><creationdate>20191113</creationdate><title>Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries</title><author>Kim, Mi-Jin ; Yang, Kwansoo ; Kang, Hui-Ju ; Hwang, Hyun Jin ; Won, Jong Chan ; Kim, Yun Ho ; Jun, Young-Si</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-95e05a5d83c8f73183e985fd05bb06d22e611250fb39ccdf58b2b04c95c63e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Carbon</topic><topic>Cloth</topic><topic>Coatings</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy industry</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Microfibers</topic><topic>Polymers</topic><topic>Polysulfides</topic><topic>Porous materials</topic><topic>Separators</topic><topic>Specific capacity</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Mi-Jin</creatorcontrib><creatorcontrib>Yang, Kwansoo</creatorcontrib><creatorcontrib>Kang, Hui-Ju</creatorcontrib><creatorcontrib>Hwang, Hyun Jin</creatorcontrib><creatorcontrib>Won, Jong Chan</creatorcontrib><creatorcontrib>Kim, Yun Ho</creatorcontrib><creatorcontrib>Jun, Young-Si</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Mi-Jin</au><au>Yang, Kwansoo</au><au>Kang, Hui-Ju</au><au>Hwang, Hyun Jin</au><au>Won, Jong Chan</au><au>Kim, Yun Ho</au><au>Jun, Young-Si</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2019-11-13</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>1612</spage><pages>1612-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Although numerous research efforts have been made for the last two decades, the chronic problems of lithium-sulphur batteries (LSBs), i.e., polysulfide shuttling of active sulphur material and surface passivation of the lithium metal anode, still impede their practical application. In order to mitigate these issues, we utilized polyimide functionalized glass microfibers (PI-GF) as a functional separator. The water-soluble precursor enabled the formation of a homogenous thin coating on the surface of the glass microfiber (GF) membrane with the potential to scale and fine-tune: the PI-GF was prepared by simple dipping of commercial GF into an aqueous solution of poly(amic acid), (PAA), followed by thermal imidization. We found that a tiny amount of polyimide (PI) of 0.5 wt.% is more than enough to endow the GF separator with useful capabilities, both retarding polysulfide migration. Combined with a free-standing microporous carbon cloth-sulphur composite cathode, the PI-GF-based LSB cell exhibits a stable cycling over 120 cycles at a current density of 1 mA/cm
and an areal sulphur loading of 2 mgS/cm
with only a marginal capacity loss of 0.099%/cycle. This corresponds to an improvement in cycle stability by 200%, specific capacity by 16.4%, and capacity loss per cycle by 45% as compared to those of the cell without PI coating. Our study revealed that a simple but synergistic combination of porous carbon supporting material and functional separator enabled us to achieve high-performance LSBs, but could also pave the way for the development of practical LSBs using the commercially viable method without using complicated synthesis or harmful and expensive chemicals.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31766243</pmid><doi>10.3390/nano9111612</doi><orcidid>https://orcid.org/0000-0002-7157-4920</orcidid><orcidid>https://orcid.org/0000-0001-7163-018X</orcidid><orcidid>https://orcid.org/0000-0003-2735-1161</orcidid><orcidid>https://orcid.org/0000-0003-1751-5716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2019-11, Vol.9 (11), p.1612 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6915437 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Aqueous solutions Carbon Cloth Coatings Efficiency Electrodes Electrolytes Energy industry Lithium Lithium sulfur batteries Microfibers Polymers Polysulfides Porous materials Separators Specific capacity Sulfur |
title | Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyimide-Coated%20Glass%20Microfiber%20as%20Polysulfide%20Perm-Selective%20Separator%20for%20High-Performance%20Lithium-Sulphur%20Batteries&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Kim,%20Mi-Jin&rft.date=2019-11-13&rft.volume=9&rft.issue=11&rft.spage=1612&rft.pages=1612-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano9111612&rft_dat=%3Cproquest_pubme%3E2548997854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548997854&rft_id=info:pmid/31766243&rfr_iscdi=true |