Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats

Abstract Enteric methane (CH4) emissions are not only an important source of greenhouse gases but also a loss of dietary energy in livestock. Corn oil (CO) is rich in unsaturated fatty acid with >50% PUFA, which may enhance ruminal biohydrogenation of unsaturated fatty acids, leading to changes i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2019-12, Vol.97 (12), p.4999-5008
Hauptverfasser: Zhang, Xiu Min, Medrano, Rodolfo F, Wang, Min, Beauchemin, Karen A, Ma, Zhi Yuan, Wang, Rong, Wen, Jiang Nan, Lukuyu, Bernard A, Tan, Zhi Liang, He, Jian Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5008
container_issue 12
container_start_page 4999
container_title Journal of animal science
container_volume 97
creator Zhang, Xiu Min
Medrano, Rodolfo F
Wang, Min
Beauchemin, Karen A
Ma, Zhi Yuan
Wang, Rong
Wen, Jiang Nan
Lukuyu, Bernard A
Tan, Zhi Liang
He, Jian Hua
description Abstract Enteric methane (CH4) emissions are not only an important source of greenhouse gases but also a loss of dietary energy in livestock. Corn oil (CO) is rich in unsaturated fatty acid with >50% PUFA, which may enhance ruminal biohydrogenation of unsaturated fatty acids, leading to changes in ruminal H2 metabolism and methanogenesis. The objective of this study was to investigate the effect of CO supplementation of a diet on CH4 emissions, nutrient digestibility, ruminal dissolved gases, fermentation, and microbiota in goats. Six female goats were used in a crossover design with two dietary treatments, which included control and CO supplementation (30 g/kg DM basis). CO supplementation did not alter total-tract organic matter digestibility or populations of predominant ruminal fibrolytic microorganisms (protozoa, fungi, Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes), but reduced enteric CH4 emissions (g/kg DMI, −15.1%, P = 0.003). CO supplementation decreased ruminal dissolved hydrogen (dH2, P < 0.001) and dissolved CH4 (P < 0.001) concentrations, proportions of total unsaturated fatty acids (P < 0.001) and propionate (P = 0.015), and increased proportions of total SFAs (P < 0.001) and acetate (P < 0.001), and acetate to propionate ratio (P = 0.038) in rumen fluid. CO supplementation decreased relative abundance of family Bacteroidales_BS11_gut_group (P = 0.032), increased relative abundance of family Rikenellaceae (P = 0.021) and Lachnospiraceae (P = 0.025), and tended to increase relative abundance of genus Butyrivibrio_2 (P = 0.06). Relative abundance (P = 0.09) and 16S rRNA gene copies (P = 0.043) of order Methanomicrobiales, and relative abundance of genus Methanomicrobium (P = 0.09) also decreased with CO supplementation, but relative abundance (P = 0.012) and 16S rRNA gene copies (P = 0.08) of genus Methanobrevibacter increased. In summary, CO supplementation increased rumen biohydrogenatation by facilitating growth of biohydrogenating bacteria of family Lachnospiraceae and genus Butyrivibrio_2 and may have enhanced reductive acetogenesis by facilitating growth of family Lachnospiraceae. In conclusion, dietary supplementation of CO led to a shift of fermentation pathways that enhanced acetate production and decreased rumen dH2 concentration and CH4 emissions.
doi_str_mv 10.1093/jas/skz352
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6915217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jas/skz352</oup_id><sourcerecordid>2343151999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-3e120e86632397c81c366fecd1f97ab90afcd1f2e0c999b49fe9bc2d7b6dcd263</originalsourceid><addsrcrecordid>eNp9ksuKFDEUhoMoTju68QEkIILIlJNLV6qyEaTxBgNudB1SqVNdaauSMhelfSof0XT3zHhZuErI_52f_-QchB5T8pISyS93Ol7GLz94ze6gFa1ZXXEq-F20IoTRqm0pO0MPYtwRQlkt6_vojNNmXSrZCv3c-OCwtxOOeVkmmMElnax3GNyonYGIx30f_BYczhHw4APurL95O6IX2LrRdjZFPEMqVQcFoo0XWLse6ylBiHiA8Nt80Wn8rvfxCKQR8GxN8J3VEzZ-nrOzaV9cj1LIpQ77AW-9TvEhujfoKcKj6_McfX775tPmfXX18d2Hzeuryqy5SBUHygi0QnDGZWNaargQA5ieDrLRnSR6ONwZECOl7NZyANkZ1jed6E3PBD9Hr06-S-5m6E2JHvSklmBnHfbKa6v-Vpwd1dZ_U0KWEdCmGDy_Ngj-a4aY1GyjgWnSDnyOinFaSyFbIQv69B9053Nwpb1CrQtHS8ZCvThR5adiDDDchqFEHRZBlUVQp0Uo8JM_49-iN5MvwLMT4PPyP6NfdpLDDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343151999</pqid></control><display><type>article</type><title>Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><creator>Zhang, Xiu Min ; Medrano, Rodolfo F ; Wang, Min ; Beauchemin, Karen A ; Ma, Zhi Yuan ; Wang, Rong ; Wen, Jiang Nan ; Lukuyu, Bernard A ; Tan, Zhi Liang ; He, Jian Hua</creator><creatorcontrib>Zhang, Xiu Min ; Medrano, Rodolfo F ; Wang, Min ; Beauchemin, Karen A ; Ma, Zhi Yuan ; Wang, Rong ; Wen, Jiang Nan ; Lukuyu, Bernard A ; Tan, Zhi Liang ; He, Jian Hua</creatorcontrib><description>Abstract Enteric methane (CH4) emissions are not only an important source of greenhouse gases but also a loss of dietary energy in livestock. Corn oil (CO) is rich in unsaturated fatty acid with &gt;50% PUFA, which may enhance ruminal biohydrogenation of unsaturated fatty acids, leading to changes in ruminal H2 metabolism and methanogenesis. The objective of this study was to investigate the effect of CO supplementation of a diet on CH4 emissions, nutrient digestibility, ruminal dissolved gases, fermentation, and microbiota in goats. Six female goats were used in a crossover design with two dietary treatments, which included control and CO supplementation (30 g/kg DM basis). CO supplementation did not alter total-tract organic matter digestibility or populations of predominant ruminal fibrolytic microorganisms (protozoa, fungi, Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes), but reduced enteric CH4 emissions (g/kg DMI, −15.1%, P = 0.003). CO supplementation decreased ruminal dissolved hydrogen (dH2, P &lt; 0.001) and dissolved CH4 (P &lt; 0.001) concentrations, proportions of total unsaturated fatty acids (P &lt; 0.001) and propionate (P = 0.015), and increased proportions of total SFAs (P &lt; 0.001) and acetate (P &lt; 0.001), and acetate to propionate ratio (P = 0.038) in rumen fluid. CO supplementation decreased relative abundance of family Bacteroidales_BS11_gut_group (P = 0.032), increased relative abundance of family Rikenellaceae (P = 0.021) and Lachnospiraceae (P = 0.025), and tended to increase relative abundance of genus Butyrivibrio_2 (P = 0.06). Relative abundance (P = 0.09) and 16S rRNA gene copies (P = 0.043) of order Methanomicrobiales, and relative abundance of genus Methanomicrobium (P = 0.09) also decreased with CO supplementation, but relative abundance (P = 0.012) and 16S rRNA gene copies (P = 0.08) of genus Methanobrevibacter increased. In summary, CO supplementation increased rumen biohydrogenatation by facilitating growth of biohydrogenating bacteria of family Lachnospiraceae and genus Butyrivibrio_2 and may have enhanced reductive acetogenesis by facilitating growth of family Lachnospiraceae. In conclusion, dietary supplementation of CO led to a shift of fermentation pathways that enhanced acetate production and decreased rumen dH2 concentration and CH4 emissions.</description><identifier>ISSN: 0021-8812</identifier><identifier>EISSN: 1525-3163</identifier><identifier>DOI: 10.1093/jas/skz352</identifier><identifier>PMID: 31740932</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Abundance ; Acetic acid ; Acetogenesis ; Animal Feed - analysis ; Animal Nutritional Physiological Phenomena ; Animals ; Corn ; Corn oil ; Corn Oil - administration &amp; dosage ; Corn Oil - metabolism ; Diet ; Diet - veterinary ; Dietary Supplements ; Digestibility ; Dissolved gases ; Emissions ; Fatty acids ; Feed additives ; Female ; Fermentation ; Fibrobacter ; Fungi ; Gastrointestinal Microbiome - drug effects ; Goats ; Goats - metabolism ; Greenhouse effect ; Greenhouse gases ; Hydrogen - metabolism ; Lachnospiraceae ; Livestock ; Metabolism ; Methane ; Methane - biosynthesis ; Methanogenesis ; Microbiota ; Microbiota - drug effects ; Microbiota - physiology ; Microorganisms ; Oils &amp; fats ; Organic matter ; Polyunsaturated fatty acids ; Propionic acid ; Protozoa ; Relative abundance ; RNA, Ribosomal, 16S - metabolism ; rRNA 16S ; Rumen ; Rumen - metabolism ; Ruminant Nutrition ; Vegetable oils</subject><ispartof>Journal of animal science, 2019-12, Vol.97 (12), p.4999-5008</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>Copyright Oxford University Press Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-3e120e86632397c81c366fecd1f97ab90afcd1f2e0c999b49fe9bc2d7b6dcd263</citedby><cites>FETCH-LOGICAL-c436t-3e120e86632397c81c366fecd1f97ab90afcd1f2e0c999b49fe9bc2d7b6dcd263</cites><orcidid>0000-0002-7818-7659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915217/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915217/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1581,27913,27914,53780,53782</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31740932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiu Min</creatorcontrib><creatorcontrib>Medrano, Rodolfo F</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Beauchemin, Karen A</creatorcontrib><creatorcontrib>Ma, Zhi Yuan</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Wen, Jiang Nan</creatorcontrib><creatorcontrib>Lukuyu, Bernard A</creatorcontrib><creatorcontrib>Tan, Zhi Liang</creatorcontrib><creatorcontrib>He, Jian Hua</creatorcontrib><title>Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats</title><title>Journal of animal science</title><addtitle>J Anim Sci</addtitle><description>Abstract Enteric methane (CH4) emissions are not only an important source of greenhouse gases but also a loss of dietary energy in livestock. Corn oil (CO) is rich in unsaturated fatty acid with &gt;50% PUFA, which may enhance ruminal biohydrogenation of unsaturated fatty acids, leading to changes in ruminal H2 metabolism and methanogenesis. The objective of this study was to investigate the effect of CO supplementation of a diet on CH4 emissions, nutrient digestibility, ruminal dissolved gases, fermentation, and microbiota in goats. Six female goats were used in a crossover design with two dietary treatments, which included control and CO supplementation (30 g/kg DM basis). CO supplementation did not alter total-tract organic matter digestibility or populations of predominant ruminal fibrolytic microorganisms (protozoa, fungi, Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes), but reduced enteric CH4 emissions (g/kg DMI, −15.1%, P = 0.003). CO supplementation decreased ruminal dissolved hydrogen (dH2, P &lt; 0.001) and dissolved CH4 (P &lt; 0.001) concentrations, proportions of total unsaturated fatty acids (P &lt; 0.001) and propionate (P = 0.015), and increased proportions of total SFAs (P &lt; 0.001) and acetate (P &lt; 0.001), and acetate to propionate ratio (P = 0.038) in rumen fluid. CO supplementation decreased relative abundance of family Bacteroidales_BS11_gut_group (P = 0.032), increased relative abundance of family Rikenellaceae (P = 0.021) and Lachnospiraceae (P = 0.025), and tended to increase relative abundance of genus Butyrivibrio_2 (P = 0.06). Relative abundance (P = 0.09) and 16S rRNA gene copies (P = 0.043) of order Methanomicrobiales, and relative abundance of genus Methanomicrobium (P = 0.09) also decreased with CO supplementation, but relative abundance (P = 0.012) and 16S rRNA gene copies (P = 0.08) of genus Methanobrevibacter increased. In summary, CO supplementation increased rumen biohydrogenatation by facilitating growth of biohydrogenating bacteria of family Lachnospiraceae and genus Butyrivibrio_2 and may have enhanced reductive acetogenesis by facilitating growth of family Lachnospiraceae. In conclusion, dietary supplementation of CO led to a shift of fermentation pathways that enhanced acetate production and decreased rumen dH2 concentration and CH4 emissions.</description><subject>Abundance</subject><subject>Acetic acid</subject><subject>Acetogenesis</subject><subject>Animal Feed - analysis</subject><subject>Animal Nutritional Physiological Phenomena</subject><subject>Animals</subject><subject>Corn</subject><subject>Corn oil</subject><subject>Corn Oil - administration &amp; dosage</subject><subject>Corn Oil - metabolism</subject><subject>Diet</subject><subject>Diet - veterinary</subject><subject>Dietary Supplements</subject><subject>Digestibility</subject><subject>Dissolved gases</subject><subject>Emissions</subject><subject>Fatty acids</subject><subject>Feed additives</subject><subject>Female</subject><subject>Fermentation</subject><subject>Fibrobacter</subject><subject>Fungi</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Goats</subject><subject>Goats - metabolism</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrogen - metabolism</subject><subject>Lachnospiraceae</subject><subject>Livestock</subject><subject>Metabolism</subject><subject>Methane</subject><subject>Methane - biosynthesis</subject><subject>Methanogenesis</subject><subject>Microbiota</subject><subject>Microbiota - drug effects</subject><subject>Microbiota - physiology</subject><subject>Microorganisms</subject><subject>Oils &amp; fats</subject><subject>Organic matter</subject><subject>Polyunsaturated fatty acids</subject><subject>Propionic acid</subject><subject>Protozoa</subject><subject>Relative abundance</subject><subject>RNA, Ribosomal, 16S - metabolism</subject><subject>rRNA 16S</subject><subject>Rumen</subject><subject>Rumen - metabolism</subject><subject>Ruminant Nutrition</subject><subject>Vegetable oils</subject><issn>0021-8812</issn><issn>1525-3163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ksuKFDEUhoMoTju68QEkIILIlJNLV6qyEaTxBgNudB1SqVNdaauSMhelfSof0XT3zHhZuErI_52f_-QchB5T8pISyS93Ol7GLz94ze6gFa1ZXXEq-F20IoTRqm0pO0MPYtwRQlkt6_vojNNmXSrZCv3c-OCwtxOOeVkmmMElnax3GNyonYGIx30f_BYczhHw4APurL95O6IX2LrRdjZFPEMqVQcFoo0XWLse6ylBiHiA8Nt80Wn8rvfxCKQR8GxN8J3VEzZ-nrOzaV9cj1LIpQ77AW-9TvEhujfoKcKj6_McfX775tPmfXX18d2Hzeuryqy5SBUHygi0QnDGZWNaargQA5ieDrLRnSR6ONwZECOl7NZyANkZ1jed6E3PBD9Hr06-S-5m6E2JHvSklmBnHfbKa6v-Vpwd1dZ_U0KWEdCmGDy_Ngj-a4aY1GyjgWnSDnyOinFaSyFbIQv69B9053Nwpb1CrQtHS8ZCvThR5adiDDDchqFEHRZBlUVQp0Uo8JM_49-iN5MvwLMT4PPyP6NfdpLDDw</recordid><startdate>20191217</startdate><enddate>20191217</enddate><creator>Zhang, Xiu Min</creator><creator>Medrano, Rodolfo F</creator><creator>Wang, Min</creator><creator>Beauchemin, Karen A</creator><creator>Ma, Zhi Yuan</creator><creator>Wang, Rong</creator><creator>Wen, Jiang Nan</creator><creator>Lukuyu, Bernard A</creator><creator>Tan, Zhi Liang</creator><creator>He, Jian Hua</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7818-7659</orcidid></search><sort><creationdate>20191217</creationdate><title>Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats</title><author>Zhang, Xiu Min ; Medrano, Rodolfo F ; Wang, Min ; Beauchemin, Karen A ; Ma, Zhi Yuan ; Wang, Rong ; Wen, Jiang Nan ; Lukuyu, Bernard A ; Tan, Zhi Liang ; He, Jian Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-3e120e86632397c81c366fecd1f97ab90afcd1f2e0c999b49fe9bc2d7b6dcd263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abundance</topic><topic>Acetic acid</topic><topic>Acetogenesis</topic><topic>Animal Feed - analysis</topic><topic>Animal Nutritional Physiological Phenomena</topic><topic>Animals</topic><topic>Corn</topic><topic>Corn oil</topic><topic>Corn Oil - administration &amp; dosage</topic><topic>Corn Oil - metabolism</topic><topic>Diet</topic><topic>Diet - veterinary</topic><topic>Dietary Supplements</topic><topic>Digestibility</topic><topic>Dissolved gases</topic><topic>Emissions</topic><topic>Fatty acids</topic><topic>Feed additives</topic><topic>Female</topic><topic>Fermentation</topic><topic>Fibrobacter</topic><topic>Fungi</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Goats</topic><topic>Goats - metabolism</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrogen - metabolism</topic><topic>Lachnospiraceae</topic><topic>Livestock</topic><topic>Metabolism</topic><topic>Methane</topic><topic>Methane - biosynthesis</topic><topic>Methanogenesis</topic><topic>Microbiota</topic><topic>Microbiota - drug effects</topic><topic>Microbiota - physiology</topic><topic>Microorganisms</topic><topic>Oils &amp; fats</topic><topic>Organic matter</topic><topic>Polyunsaturated fatty acids</topic><topic>Propionic acid</topic><topic>Protozoa</topic><topic>Relative abundance</topic><topic>RNA, Ribosomal, 16S - metabolism</topic><topic>rRNA 16S</topic><topic>Rumen</topic><topic>Rumen - metabolism</topic><topic>Ruminant Nutrition</topic><topic>Vegetable oils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiu Min</creatorcontrib><creatorcontrib>Medrano, Rodolfo F</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Beauchemin, Karen A</creatorcontrib><creatorcontrib>Ma, Zhi Yuan</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Wen, Jiang Nan</creatorcontrib><creatorcontrib>Lukuyu, Bernard A</creatorcontrib><creatorcontrib>Tan, Zhi Liang</creatorcontrib><creatorcontrib>He, Jian Hua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of animal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiu Min</au><au>Medrano, Rodolfo F</au><au>Wang, Min</au><au>Beauchemin, Karen A</au><au>Ma, Zhi Yuan</au><au>Wang, Rong</au><au>Wen, Jiang Nan</au><au>Lukuyu, Bernard A</au><au>Tan, Zhi Liang</au><au>He, Jian Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats</atitle><jtitle>Journal of animal science</jtitle><addtitle>J Anim Sci</addtitle><date>2019-12-17</date><risdate>2019</risdate><volume>97</volume><issue>12</issue><spage>4999</spage><epage>5008</epage><pages>4999-5008</pages><issn>0021-8812</issn><eissn>1525-3163</eissn><abstract>Abstract Enteric methane (CH4) emissions are not only an important source of greenhouse gases but also a loss of dietary energy in livestock. Corn oil (CO) is rich in unsaturated fatty acid with &gt;50% PUFA, which may enhance ruminal biohydrogenation of unsaturated fatty acids, leading to changes in ruminal H2 metabolism and methanogenesis. The objective of this study was to investigate the effect of CO supplementation of a diet on CH4 emissions, nutrient digestibility, ruminal dissolved gases, fermentation, and microbiota in goats. Six female goats were used in a crossover design with two dietary treatments, which included control and CO supplementation (30 g/kg DM basis). CO supplementation did not alter total-tract organic matter digestibility or populations of predominant ruminal fibrolytic microorganisms (protozoa, fungi, Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes), but reduced enteric CH4 emissions (g/kg DMI, −15.1%, P = 0.003). CO supplementation decreased ruminal dissolved hydrogen (dH2, P &lt; 0.001) and dissolved CH4 (P &lt; 0.001) concentrations, proportions of total unsaturated fatty acids (P &lt; 0.001) and propionate (P = 0.015), and increased proportions of total SFAs (P &lt; 0.001) and acetate (P &lt; 0.001), and acetate to propionate ratio (P = 0.038) in rumen fluid. CO supplementation decreased relative abundance of family Bacteroidales_BS11_gut_group (P = 0.032), increased relative abundance of family Rikenellaceae (P = 0.021) and Lachnospiraceae (P = 0.025), and tended to increase relative abundance of genus Butyrivibrio_2 (P = 0.06). Relative abundance (P = 0.09) and 16S rRNA gene copies (P = 0.043) of order Methanomicrobiales, and relative abundance of genus Methanomicrobium (P = 0.09) also decreased with CO supplementation, but relative abundance (P = 0.012) and 16S rRNA gene copies (P = 0.08) of genus Methanobrevibacter increased. In summary, CO supplementation increased rumen biohydrogenatation by facilitating growth of biohydrogenating bacteria of family Lachnospiraceae and genus Butyrivibrio_2 and may have enhanced reductive acetogenesis by facilitating growth of family Lachnospiraceae. In conclusion, dietary supplementation of CO led to a shift of fermentation pathways that enhanced acetate production and decreased rumen dH2 concentration and CH4 emissions.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>31740932</pmid><doi>10.1093/jas/skz352</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7818-7659</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8812
ispartof Journal of animal science, 2019-12, Vol.97 (12), p.4999-5008
issn 0021-8812
1525-3163
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6915217
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central
subjects Abundance
Acetic acid
Acetogenesis
Animal Feed - analysis
Animal Nutritional Physiological Phenomena
Animals
Corn
Corn oil
Corn Oil - administration & dosage
Corn Oil - metabolism
Diet
Diet - veterinary
Dietary Supplements
Digestibility
Dissolved gases
Emissions
Fatty acids
Feed additives
Female
Fermentation
Fibrobacter
Fungi
Gastrointestinal Microbiome - drug effects
Goats
Goats - metabolism
Greenhouse effect
Greenhouse gases
Hydrogen - metabolism
Lachnospiraceae
Livestock
Metabolism
Methane
Methane - biosynthesis
Methanogenesis
Microbiota
Microbiota - drug effects
Microbiota - physiology
Microorganisms
Oils & fats
Organic matter
Polyunsaturated fatty acids
Propionic acid
Protozoa
Relative abundance
RNA, Ribosomal, 16S - metabolism
rRNA 16S
Rumen
Rumen - metabolism
Ruminant Nutrition
Vegetable oils
title Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corn%20oil%20supplementation%20enhances%20hydrogen%20use%20for%20biohydrogenation,%20inhibits%20methanogenesis,%20and%20alters%20fermentation%20pathways%20and%20the%20microbial%20community%20in%20the%20rumen%20of%20goats&rft.jtitle=Journal%20of%20animal%20science&rft.au=Zhang,%20Xiu%20Min&rft.date=2019-12-17&rft.volume=97&rft.issue=12&rft.spage=4999&rft.epage=5008&rft.pages=4999-5008&rft.issn=0021-8812&rft.eissn=1525-3163&rft_id=info:doi/10.1093/jas/skz352&rft_dat=%3Cproquest_pubme%3E2343151999%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343151999&rft_id=info:pmid/31740932&rft_oup_id=10.1093/jas/skz352&rfr_iscdi=true