Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence
Exposure to a chemical is a critical consideration in the assessment of risk, as it adds real-world context to toxicological information. Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments...
Gespeichert in:
Veröffentlicht in: | Journal of exposure science & environmental epidemiology 2020-01, Vol.30 (1), p.184-193 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 1 |
container_start_page | 184 |
container_title | Journal of exposure science & environmental epidemiology |
container_volume | 30 |
creator | Brandon, Namdi Dionisio, Kathie L. Isaacs, Kristin Tornero-Velez, Rogelio Kapraun, Dustin Setzer, R. Woodrow Price, Paul S. |
description | Exposure to a chemical is a critical consideration in the assessment of risk, as it adds real-world context to toxicological information. Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that simulates longitudinal patterns in human behavior. By basing the ABM upon an artificial intelligence (AI) system, we create agents that mimic human decisions on performing behaviors relevant for determining exposures to chemicals and other stressors. We implement the ABM in a computer program called the Agent-Based Model of Human Activity Patterns (ABMHAP) that predicts the longitudinal patterns for sleeping, eating, commuting, and working. We then show that ABMHAP is capable of simulating behavior over extended periods of time. We propose that this framework, and models based on it, can generate longitudinal human behavior data for use in exposure assessments. |
doi_str_mv | 10.1038/s41370-018-0052-y |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6914672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A608906825</galeid><sourcerecordid>A608906825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-b4f210829093a56b908f6c514ed6d1c81538b7b424e561e0a02f98f3cf6264c33</originalsourceid><addsrcrecordid>eNp1kkuLFDEUhQtRnHH0B7iRAmF2NebdqY0wDL5gwIUK7kIqdVOVIZW0SdWM_e8nTbdtNyhZJLn3OycPTlW9xugKIyrfZYbpCjUIywYhTprNk-occ942SLCfTw9ris-qFznfIcTYSqDn1RlFhBEi5Hm1_uamxevZhaGG3-uYlwRNglKBvu5g1PcuplwveQvoAcLcdDqX3hR78LmGqYO-L_sHN491AOjzHtBpdtYZp33twgzeu6I28LJ6ZrXP8Go_X1Q_Pn74fvO5uf366cvN9W1juJDlEGYJRpK0qKWai65F0grDMYNe9NhIzKnsVh0jDLjAgDQitpWWGiuIYIbSi-r9zne9dBP0ptw8aa_WyU06bVTUTp12ghvVEO-VaDETK1IM3u4NUvy1QJ7VXVxSKHdWhJIVpVy0R9SgPSgXbCxmZnLZqGuBZIuEJLxQV_-gyuhhciYGsK7UTwSXR4IRtJ_HHP0yuxjyKYh3oEkx5wT28EKM1DYkahcSVUKitiFRm6J5c_w1B8WfVBSA7IBcWmGA9Pfp_3d9BCMRyEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327335692</pqid></control><display><type>article</type><title>Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Brandon, Namdi ; Dionisio, Kathie L. ; Isaacs, Kristin ; Tornero-Velez, Rogelio ; Kapraun, Dustin ; Setzer, R. Woodrow ; Price, Paul S.</creator><creatorcontrib>Brandon, Namdi ; Dionisio, Kathie L. ; Isaacs, Kristin ; Tornero-Velez, Rogelio ; Kapraun, Dustin ; Setzer, R. Woodrow ; Price, Paul S.</creatorcontrib><description>Exposure to a chemical is a critical consideration in the assessment of risk, as it adds real-world context to toxicological information. Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that simulates longitudinal patterns in human behavior. By basing the ABM upon an artificial intelligence (AI) system, we create agents that mimic human decisions on performing behaviors relevant for determining exposures to chemicals and other stressors. We implement the ABM in a computer program called the Agent-Based Model of Human Activity Patterns (ABMHAP) that predicts the longitudinal patterns for sleeping, eating, commuting, and working. We then show that ABMHAP is capable of simulating behavior over extended periods of time. We propose that this framework, and models based on it, can generate longitudinal human behavior data for use in exposure assessments.</description><identifier>ISSN: 1559-0631</identifier><identifier>EISSN: 1559-064X</identifier><identifier>DOI: 10.1038/s41370-018-0052-y</identifier><identifier>PMID: 30242268</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agent-based models ; Artificial Intelligence ; Behavior ; Commuting ; Computer simulation ; Consumer products ; Environmental Exposure - statistics & numerical data ; Epidemiology ; Exposure ; Human acts ; Human behavior ; Humans ; Indoor environments ; Medicine ; Medicine & Public Health ; Risk assessment ; Risk Assessment - methods</subject><ispartof>Journal of exposure science & environmental epidemiology, 2020-01, Vol.30 (1), p.184-193</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-b4f210829093a56b908f6c514ed6d1c81538b7b424e561e0a02f98f3cf6264c33</citedby><cites>FETCH-LOGICAL-c568t-b4f210829093a56b908f6c514ed6d1c81538b7b424e561e0a02f98f3cf6264c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41370-018-0052-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41370-018-0052-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30242268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brandon, Namdi</creatorcontrib><creatorcontrib>Dionisio, Kathie L.</creatorcontrib><creatorcontrib>Isaacs, Kristin</creatorcontrib><creatorcontrib>Tornero-Velez, Rogelio</creatorcontrib><creatorcontrib>Kapraun, Dustin</creatorcontrib><creatorcontrib>Setzer, R. Woodrow</creatorcontrib><creatorcontrib>Price, Paul S.</creatorcontrib><title>Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence</title><title>Journal of exposure science & environmental epidemiology</title><addtitle>J Expo Sci Environ Epidemiol</addtitle><addtitle>J Expo Sci Environ Epidemiol</addtitle><description>Exposure to a chemical is a critical consideration in the assessment of risk, as it adds real-world context to toxicological information. Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that simulates longitudinal patterns in human behavior. By basing the ABM upon an artificial intelligence (AI) system, we create agents that mimic human decisions on performing behaviors relevant for determining exposures to chemicals and other stressors. We implement the ABM in a computer program called the Agent-Based Model of Human Activity Patterns (ABMHAP) that predicts the longitudinal patterns for sleeping, eating, commuting, and working. We then show that ABMHAP is capable of simulating behavior over extended periods of time. We propose that this framework, and models based on it, can generate longitudinal human behavior data for use in exposure assessments.</description><subject>Agent-based models</subject><subject>Artificial Intelligence</subject><subject>Behavior</subject><subject>Commuting</subject><subject>Computer simulation</subject><subject>Consumer products</subject><subject>Environmental Exposure - statistics & numerical data</subject><subject>Epidemiology</subject><subject>Exposure</subject><subject>Human acts</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Indoor environments</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Risk assessment</subject><subject>Risk Assessment - methods</subject><issn>1559-0631</issn><issn>1559-064X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kkuLFDEUhQtRnHH0B7iRAmF2NebdqY0wDL5gwIUK7kIqdVOVIZW0SdWM_e8nTbdtNyhZJLn3OycPTlW9xugKIyrfZYbpCjUIywYhTprNk-occ942SLCfTw9ris-qFznfIcTYSqDn1RlFhBEi5Hm1_uamxevZhaGG3-uYlwRNglKBvu5g1PcuplwveQvoAcLcdDqX3hR78LmGqYO-L_sHN491AOjzHtBpdtYZp33twgzeu6I28LJ6ZrXP8Go_X1Q_Pn74fvO5uf366cvN9W1juJDlEGYJRpK0qKWai65F0grDMYNe9NhIzKnsVh0jDLjAgDQitpWWGiuIYIbSi-r9zne9dBP0ptw8aa_WyU06bVTUTp12ghvVEO-VaDETK1IM3u4NUvy1QJ7VXVxSKHdWhJIVpVy0R9SgPSgXbCxmZnLZqGuBZIuEJLxQV_-gyuhhciYGsK7UTwSXR4IRtJ_HHP0yuxjyKYh3oEkx5wT28EKM1DYkahcSVUKitiFRm6J5c_w1B8WfVBSA7IBcWmGA9Pfp_3d9BCMRyEQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Brandon, Namdi</creator><creator>Dionisio, Kathie L.</creator><creator>Isaacs, Kristin</creator><creator>Tornero-Velez, Rogelio</creator><creator>Kapraun, Dustin</creator><creator>Setzer, R. Woodrow</creator><creator>Price, Paul S.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7ST</scope><scope>7T2</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence</title><author>Brandon, Namdi ; Dionisio, Kathie L. ; Isaacs, Kristin ; Tornero-Velez, Rogelio ; Kapraun, Dustin ; Setzer, R. Woodrow ; Price, Paul S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-b4f210829093a56b908f6c514ed6d1c81538b7b424e561e0a02f98f3cf6264c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agent-based models</topic><topic>Artificial Intelligence</topic><topic>Behavior</topic><topic>Commuting</topic><topic>Computer simulation</topic><topic>Consumer products</topic><topic>Environmental Exposure - statistics & numerical data</topic><topic>Epidemiology</topic><topic>Exposure</topic><topic>Human acts</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Indoor environments</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Risk assessment</topic><topic>Risk Assessment - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandon, Namdi</creatorcontrib><creatorcontrib>Dionisio, Kathie L.</creatorcontrib><creatorcontrib>Isaacs, Kristin</creatorcontrib><creatorcontrib>Tornero-Velez, Rogelio</creatorcontrib><creatorcontrib>Kapraun, Dustin</creatorcontrib><creatorcontrib>Setzer, R. Woodrow</creatorcontrib><creatorcontrib>Price, Paul S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of exposure science & environmental epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandon, Namdi</au><au>Dionisio, Kathie L.</au><au>Isaacs, Kristin</au><au>Tornero-Velez, Rogelio</au><au>Kapraun, Dustin</au><au>Setzer, R. Woodrow</au><au>Price, Paul S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence</atitle><jtitle>Journal of exposure science & environmental epidemiology</jtitle><stitle>J Expo Sci Environ Epidemiol</stitle><addtitle>J Expo Sci Environ Epidemiol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>30</volume><issue>1</issue><spage>184</spage><epage>193</epage><pages>184-193</pages><issn>1559-0631</issn><eissn>1559-064X</eissn><abstract>Exposure to a chemical is a critical consideration in the assessment of risk, as it adds real-world context to toxicological information. Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that simulates longitudinal patterns in human behavior. By basing the ABM upon an artificial intelligence (AI) system, we create agents that mimic human decisions on performing behaviors relevant for determining exposures to chemicals and other stressors. We implement the ABM in a computer program called the Agent-Based Model of Human Activity Patterns (ABMHAP) that predicts the longitudinal patterns for sleeping, eating, commuting, and working. We then show that ABMHAP is capable of simulating behavior over extended periods of time. We propose that this framework, and models based on it, can generate longitudinal human behavior data for use in exposure assessments.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30242268</pmid><doi>10.1038/s41370-018-0052-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-0631 |
ispartof | Journal of exposure science & environmental epidemiology, 2020-01, Vol.30 (1), p.184-193 |
issn | 1559-0631 1559-064X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6914672 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Agent-based models Artificial Intelligence Behavior Commuting Computer simulation Consumer products Environmental Exposure - statistics & numerical data Epidemiology Exposure Human acts Human behavior Humans Indoor environments Medicine Medicine & Public Health Risk assessment Risk Assessment - methods |
title | Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20exposure-related%20behaviors%20using%20agent-based%20models%20embedded%20with%20needs-based%20artificial%20intelligence&rft.jtitle=Journal%20of%20exposure%20science%20&%20environmental%20epidemiology&rft.au=Brandon,%20Namdi&rft.date=2020-01-01&rft.volume=30&rft.issue=1&rft.spage=184&rft.epage=193&rft.pages=184-193&rft.issn=1559-0631&rft.eissn=1559-064X&rft_id=info:doi/10.1038/s41370-018-0052-y&rft_dat=%3Cgale_pubme%3EA608906825%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327335692&rft_id=info:pmid/30242268&rft_galeid=A608906825&rfr_iscdi=true |