Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation

Atrial fibrillation (AF) is a sustained cardiac arrhythmia associated with stroke, heart failure, and related health conditions. Though easily diagnosed upon presentation in a clinical setting, the transient and/or intermittent emergence of AF episodes present diagnostic and clinical monitoring chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2019-11, Vol.8 (11), p.1840
Hauptverfasser: Pérez-Valero, Jesús, Caballero Pintado, M Victoria, Melgarejo, Francisco, García-Sánchez, Antonio-Javier, Garcia-Haro, Joan, García Córdoba, Francisco, García Córdoba, José A, Pinar, Eduardo, García Alberola, Arcadio, Matilla-García, Mariano, Curtin, Paul, Arora, Manish, Ruiz Marín, Manuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1840
container_title Journal of clinical medicine
container_volume 8
creator Pérez-Valero, Jesús
Caballero Pintado, M Victoria
Melgarejo, Francisco
García-Sánchez, Antonio-Javier
Garcia-Haro, Joan
García Córdoba, Francisco
García Córdoba, José A
Pinar, Eduardo
García Alberola, Arcadio
Matilla-García, Mariano
Curtin, Paul
Arora, Manish
Ruiz Marín, Manuel
description Atrial fibrillation (AF) is a sustained cardiac arrhythmia associated with stroke, heart failure, and related health conditions. Though easily diagnosed upon presentation in a clinical setting, the transient and/or intermittent emergence of AF episodes present diagnostic and clinical monitoring challenges that would ideally be met with automated ambulatory monitoring and detection. Current approaches to address these needs, commonly available both in smartphone applications and dedicated technologies, combine electrocardiogram (ECG) sensors with predictive algorithms to detect AF. These methods typically require extensive preprocessing, preliminary signal analysis, and the integration of a wide and complex array of features for the detection of AF events, and are consequently vulnerable to over-fitting. In this paper, we introduce the application of symbolic recurrence quantification analysis (SRQA) for the study of ECG signals and detection of AF events, which requires minimal pre-processing and allows the construction of highly accurate predictive algorithms from relatively few features. In addition, this approach is robust against commonly-encountered signal processing challenges that are expected in ambulatory monitoring contexts, including noisy and non-stationary data. We demonstrate the application of this method to yield a highly accurate predictive algorithm, which at optimal threshold values is 97.9% sensitive, 97.6% specific, and 97.7% accurate in classifying AF signals. To confirm the robust generalizability of this approach, we further evaluated its performance in the implementation of a 10-fold cross-validation paradigm, yielding 97.4% accuracy. In sum, these findings emphasize the robust utility of SRQA for the analysis of ECG signals and detection of AF. To the best of our knowledge, the proposed model is the first to incorporate symbolic analysis for AF beat detection.
doi_str_mv 10.3390/jcm8111840
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6912662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312277678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-af40acf65f7f32e15b86c6b896f6cb2fd0d50ab0f7e54a291945d0834c3943a3</originalsourceid><addsrcrecordid>eNpVkN9LwzAQx4Mobsy9-AdIH0Wo5kebpC_CmE4HA2HuPaRpohltM5N0sP_eyuaceblw97nv3X0BuEbwnpACPqxVwxFCPINnYIghYykknJyf_AdgHMIa9o_zDCN2CQYE0b4BZkMwf981pautSpZadd7rVulk0sp6F2xInEmWy2TeRu23sk6iS5501Comk-htn5jZ0tu6ltG69gpcGFkHPT7EEVjNnlfT13Tx9jKfThapIozHVJoMSmVobpghWKO85FTRkhfUUFViU8Eqh7KEhuk8k7hARZZXkJNMkSIjkozA415205WNrpRuo5e12HjbSL8TTlrxv9LaT_HhtoIWCFOKe4Hbg4B3X50OUTQ2KN1f0WrXBYEJwpgxyniP3u1R5V0IXpvjGATFj_viz_0evjld7Ij-ek2-AdzggHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312277678</pqid></control><display><type>article</type><title>Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pérez-Valero, Jesús ; Caballero Pintado, M Victoria ; Melgarejo, Francisco ; García-Sánchez, Antonio-Javier ; Garcia-Haro, Joan ; García Córdoba, Francisco ; García Córdoba, José A ; Pinar, Eduardo ; García Alberola, Arcadio ; Matilla-García, Mariano ; Curtin, Paul ; Arora, Manish ; Ruiz Marín, Manuel</creator><creatorcontrib>Pérez-Valero, Jesús ; Caballero Pintado, M Victoria ; Melgarejo, Francisco ; García-Sánchez, Antonio-Javier ; Garcia-Haro, Joan ; García Córdoba, Francisco ; García Córdoba, José A ; Pinar, Eduardo ; García Alberola, Arcadio ; Matilla-García, Mariano ; Curtin, Paul ; Arora, Manish ; Ruiz Marín, Manuel</creatorcontrib><description>Atrial fibrillation (AF) is a sustained cardiac arrhythmia associated with stroke, heart failure, and related health conditions. Though easily diagnosed upon presentation in a clinical setting, the transient and/or intermittent emergence of AF episodes present diagnostic and clinical monitoring challenges that would ideally be met with automated ambulatory monitoring and detection. Current approaches to address these needs, commonly available both in smartphone applications and dedicated technologies, combine electrocardiogram (ECG) sensors with predictive algorithms to detect AF. These methods typically require extensive preprocessing, preliminary signal analysis, and the integration of a wide and complex array of features for the detection of AF events, and are consequently vulnerable to over-fitting. In this paper, we introduce the application of symbolic recurrence quantification analysis (SRQA) for the study of ECG signals and detection of AF events, which requires minimal pre-processing and allows the construction of highly accurate predictive algorithms from relatively few features. In addition, this approach is robust against commonly-encountered signal processing challenges that are expected in ambulatory monitoring contexts, including noisy and non-stationary data. We demonstrate the application of this method to yield a highly accurate predictive algorithm, which at optimal threshold values is 97.9% sensitive, 97.6% specific, and 97.7% accurate in classifying AF signals. To confirm the robust generalizability of this approach, we further evaluated its performance in the implementation of a 10-fold cross-validation paradigm, yielding 97.4% accuracy. In sum, these findings emphasize the robust utility of SRQA for the analysis of ECG signals and detection of AF. To the best of our knowledge, the proposed model is the first to incorporate symbolic analysis for AF beat detection.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm8111840</identifier><identifier>PMID: 31684004</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><ispartof>Journal of clinical medicine, 2019-11, Vol.8 (11), p.1840</ispartof><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-af40acf65f7f32e15b86c6b896f6cb2fd0d50ab0f7e54a291945d0834c3943a3</citedby><cites>FETCH-LOGICAL-c378t-af40acf65f7f32e15b86c6b896f6cb2fd0d50ab0f7e54a291945d0834c3943a3</cites><orcidid>0000-0003-1928-865X ; 0000-0001-9228-6410 ; 0000-0001-6916-6082 ; 0000-0001-5095-3035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912662/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912662/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31684004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-Valero, Jesús</creatorcontrib><creatorcontrib>Caballero Pintado, M Victoria</creatorcontrib><creatorcontrib>Melgarejo, Francisco</creatorcontrib><creatorcontrib>García-Sánchez, Antonio-Javier</creatorcontrib><creatorcontrib>Garcia-Haro, Joan</creatorcontrib><creatorcontrib>García Córdoba, Francisco</creatorcontrib><creatorcontrib>García Córdoba, José A</creatorcontrib><creatorcontrib>Pinar, Eduardo</creatorcontrib><creatorcontrib>García Alberola, Arcadio</creatorcontrib><creatorcontrib>Matilla-García, Mariano</creatorcontrib><creatorcontrib>Curtin, Paul</creatorcontrib><creatorcontrib>Arora, Manish</creatorcontrib><creatorcontrib>Ruiz Marín, Manuel</creatorcontrib><title>Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>Atrial fibrillation (AF) is a sustained cardiac arrhythmia associated with stroke, heart failure, and related health conditions. Though easily diagnosed upon presentation in a clinical setting, the transient and/or intermittent emergence of AF episodes present diagnostic and clinical monitoring challenges that would ideally be met with automated ambulatory monitoring and detection. Current approaches to address these needs, commonly available both in smartphone applications and dedicated technologies, combine electrocardiogram (ECG) sensors with predictive algorithms to detect AF. These methods typically require extensive preprocessing, preliminary signal analysis, and the integration of a wide and complex array of features for the detection of AF events, and are consequently vulnerable to over-fitting. In this paper, we introduce the application of symbolic recurrence quantification analysis (SRQA) for the study of ECG signals and detection of AF events, which requires minimal pre-processing and allows the construction of highly accurate predictive algorithms from relatively few features. In addition, this approach is robust against commonly-encountered signal processing challenges that are expected in ambulatory monitoring contexts, including noisy and non-stationary data. We demonstrate the application of this method to yield a highly accurate predictive algorithm, which at optimal threshold values is 97.9% sensitive, 97.6% specific, and 97.7% accurate in classifying AF signals. To confirm the robust generalizability of this approach, we further evaluated its performance in the implementation of a 10-fold cross-validation paradigm, yielding 97.4% accuracy. In sum, these findings emphasize the robust utility of SRQA for the analysis of ECG signals and detection of AF. To the best of our knowledge, the proposed model is the first to incorporate symbolic analysis for AF beat detection.</description><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkN9LwzAQx4Mobsy9-AdIH0Wo5kebpC_CmE4HA2HuPaRpohltM5N0sP_eyuaceblw97nv3X0BuEbwnpACPqxVwxFCPINnYIghYykknJyf_AdgHMIa9o_zDCN2CQYE0b4BZkMwf981pautSpZadd7rVulk0sp6F2xInEmWy2TeRu23sk6iS5501Comk-htn5jZ0tu6ltG69gpcGFkHPT7EEVjNnlfT13Tx9jKfThapIozHVJoMSmVobpghWKO85FTRkhfUUFViU8Eqh7KEhuk8k7hARZZXkJNMkSIjkozA415205WNrpRuo5e12HjbSL8TTlrxv9LaT_HhtoIWCFOKe4Hbg4B3X50OUTQ2KN1f0WrXBYEJwpgxyniP3u1R5V0IXpvjGATFj_viz_0evjld7Ij-ek2-AdzggHw</recordid><startdate>20191102</startdate><enddate>20191102</enddate><creator>Pérez-Valero, Jesús</creator><creator>Caballero Pintado, M Victoria</creator><creator>Melgarejo, Francisco</creator><creator>García-Sánchez, Antonio-Javier</creator><creator>Garcia-Haro, Joan</creator><creator>García Córdoba, Francisco</creator><creator>García Córdoba, José A</creator><creator>Pinar, Eduardo</creator><creator>García Alberola, Arcadio</creator><creator>Matilla-García, Mariano</creator><creator>Curtin, Paul</creator><creator>Arora, Manish</creator><creator>Ruiz Marín, Manuel</creator><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1928-865X</orcidid><orcidid>https://orcid.org/0000-0001-9228-6410</orcidid><orcidid>https://orcid.org/0000-0001-6916-6082</orcidid><orcidid>https://orcid.org/0000-0001-5095-3035</orcidid></search><sort><creationdate>20191102</creationdate><title>Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation</title><author>Pérez-Valero, Jesús ; Caballero Pintado, M Victoria ; Melgarejo, Francisco ; García-Sánchez, Antonio-Javier ; Garcia-Haro, Joan ; García Córdoba, Francisco ; García Córdoba, José A ; Pinar, Eduardo ; García Alberola, Arcadio ; Matilla-García, Mariano ; Curtin, Paul ; Arora, Manish ; Ruiz Marín, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-af40acf65f7f32e15b86c6b896f6cb2fd0d50ab0f7e54a291945d0834c3943a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Valero, Jesús</creatorcontrib><creatorcontrib>Caballero Pintado, M Victoria</creatorcontrib><creatorcontrib>Melgarejo, Francisco</creatorcontrib><creatorcontrib>García-Sánchez, Antonio-Javier</creatorcontrib><creatorcontrib>Garcia-Haro, Joan</creatorcontrib><creatorcontrib>García Córdoba, Francisco</creatorcontrib><creatorcontrib>García Córdoba, José A</creatorcontrib><creatorcontrib>Pinar, Eduardo</creatorcontrib><creatorcontrib>García Alberola, Arcadio</creatorcontrib><creatorcontrib>Matilla-García, Mariano</creatorcontrib><creatorcontrib>Curtin, Paul</creatorcontrib><creatorcontrib>Arora, Manish</creatorcontrib><creatorcontrib>Ruiz Marín, Manuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Valero, Jesús</au><au>Caballero Pintado, M Victoria</au><au>Melgarejo, Francisco</au><au>García-Sánchez, Antonio-Javier</au><au>Garcia-Haro, Joan</au><au>García Córdoba, Francisco</au><au>García Córdoba, José A</au><au>Pinar, Eduardo</au><au>García Alberola, Arcadio</au><au>Matilla-García, Mariano</au><au>Curtin, Paul</au><au>Arora, Manish</au><au>Ruiz Marín, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2019-11-02</date><risdate>2019</risdate><volume>8</volume><issue>11</issue><spage>1840</spage><pages>1840-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Atrial fibrillation (AF) is a sustained cardiac arrhythmia associated with stroke, heart failure, and related health conditions. Though easily diagnosed upon presentation in a clinical setting, the transient and/or intermittent emergence of AF episodes present diagnostic and clinical monitoring challenges that would ideally be met with automated ambulatory monitoring and detection. Current approaches to address these needs, commonly available both in smartphone applications and dedicated technologies, combine electrocardiogram (ECG) sensors with predictive algorithms to detect AF. These methods typically require extensive preprocessing, preliminary signal analysis, and the integration of a wide and complex array of features for the detection of AF events, and are consequently vulnerable to over-fitting. In this paper, we introduce the application of symbolic recurrence quantification analysis (SRQA) for the study of ECG signals and detection of AF events, which requires minimal pre-processing and allows the construction of highly accurate predictive algorithms from relatively few features. In addition, this approach is robust against commonly-encountered signal processing challenges that are expected in ambulatory monitoring contexts, including noisy and non-stationary data. We demonstrate the application of this method to yield a highly accurate predictive algorithm, which at optimal threshold values is 97.9% sensitive, 97.6% specific, and 97.7% accurate in classifying AF signals. To confirm the robust generalizability of this approach, we further evaluated its performance in the implementation of a 10-fold cross-validation paradigm, yielding 97.4% accuracy. In sum, these findings emphasize the robust utility of SRQA for the analysis of ECG signals and detection of AF. To the best of our knowledge, the proposed model is the first to incorporate symbolic analysis for AF beat detection.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>31684004</pmid><doi>10.3390/jcm8111840</doi><orcidid>https://orcid.org/0000-0003-1928-865X</orcidid><orcidid>https://orcid.org/0000-0001-9228-6410</orcidid><orcidid>https://orcid.org/0000-0001-6916-6082</orcidid><orcidid>https://orcid.org/0000-0001-5095-3035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2019-11, Vol.8 (11), p.1840
issn 2077-0383
2077-0383
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6912662
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbolic%20Recurrence%20Analysis%20of%20RR%20Interval%20to%20Detect%20Atrial%20Fibrillation&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=P%C3%A9rez-Valero,%20Jes%C3%BAs&rft.date=2019-11-02&rft.volume=8&rft.issue=11&rft.spage=1840&rft.pages=1840-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm8111840&rft_dat=%3Cproquest_pubme%3E2312277678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312277678&rft_id=info:pmid/31684004&rfr_iscdi=true