CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity
Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2019-10, Vol.15 (10), p.949-958 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 958 |
---|---|
container_issue | 10 |
container_start_page | 949 |
container_title | Nature chemical biology |
container_volume | 15 |
creator | Tsui, C. Kimberly Barfield, Robyn M. Fischer, Curt R. Morgens, David W. Li, Amy Smith, Benjamin A. H. Gray, Melissa Anne Bertozzi, Carolyn R. Rabuka, David Bassik, Michael C. |
description | Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine–citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.
A series of genome-wide and targeted CRISPR screens uncovered regulators of antibody–drug conjugate (ADC) toxicity. Depletion of sialic acids was found to enhance ADC lysosomal delivery, in part by reducing ADC recycling. |
doi_str_mv | 10.1038/s41589-019-0342-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6911768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2298191469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-44e8df5a4cf845931c2a5fa979d53253f63646752d7f1e64d498a38e0d5c4643</originalsourceid><addsrcrecordid>eNp1UctKBDEQDKK4uvoBXmTA82jek1wEWXwsKIruPWTzGGdZJ5rMiHvzH_xDv8TI6qoHD6FDd3V1dRcAewgeIkjEUaKICVlClB-huMRrYAsxhktKuVxf_RkcgO2UZhASzpHYBAOCKEMVh1vganQ7vru5LUc6ySKZ6Fybisa6tmv8ooiu7ue6CzEVwRc6J6fBLt5f32zs68KEdtbXunNFF14a03SLHbDh9Ty53a84BJOz08noory8Ph-PTi5LQyvYZUlOWM80NV5QJgkyWDOvZSUtI5gRzwmnvGLYVh45Ti2VQhPhoGWGckqG4HhJ-9hPH5w1WW3Uc_UYmwcdFyroRv2ttM29qsOz4hLltUUmOPgiiOGpd6lTs9DHNktWGEuBJMoHzCi0RJkYUorOryYgqD4NUEsDVDZAfRqgcO7Z_y1t1fF98QzAS0DKpbZ28Wf0_6wfVm-STg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298191469</pqid></control><display><type>article</type><title>CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Tsui, C. Kimberly ; Barfield, Robyn M. ; Fischer, Curt R. ; Morgens, David W. ; Li, Amy ; Smith, Benjamin A. H. ; Gray, Melissa Anne ; Bertozzi, Carolyn R. ; Rabuka, David ; Bassik, Michael C.</creator><creatorcontrib>Tsui, C. Kimberly ; Barfield, Robyn M. ; Fischer, Curt R. ; Morgens, David W. ; Li, Amy ; Smith, Benjamin A. H. ; Gray, Melissa Anne ; Bertozzi, Carolyn R. ; Rabuka, David ; Bassik, Michael C.</creatorcontrib><description>Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine–citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.
A series of genome-wide and targeted CRISPR screens uncovered regulators of antibody–drug conjugate (ADC) toxicity. Depletion of sialic acids was found to enhance ADC lysosomal delivery, in part by reducing ADC recycling.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-019-0342-2</identifier><identifier>PMID: 31451760</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/80/313 ; 631/92/152 ; 631/92/221 ; 631/92/507 ; Ado-Trastuzumab Emtansine ; Antibodies ; Antineoplastic Agents, Immunological - pharmacology ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Breast cancer ; Cancer ; Carrier Proteins ; Cell Biology ; Cell Line, Tumor ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chemotherapy ; Citrulline ; Comparative analysis ; Conjugates ; CRISPR ; CRISPR-Cas Systems ; Depletion ; Drug delivery systems ; ErbB-2 protein ; Gene Expression Regulation, Neoplastic ; Gene Knockout Techniques ; Genome-Wide Association Study ; Humans ; Immunoconjugates - toxicity ; Internalization ; Lysosomes ; Maytansine - analogs & derivatives ; Maytansine - pharmacology ; Modulators ; Monoclonal antibodies ; N-Acetylneuraminic Acid - pharmacology ; Regulatory agencies ; Target recognition ; Targeted cancer therapy ; Toxicity ; Trastuzumab ; Trastuzumab - pharmacology ; Valine</subject><ispartof>Nature chemical biology, 2019-10, Vol.15 (10), p.949-958</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>Copyright Nature Publishing Group Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-44e8df5a4cf845931c2a5fa979d53253f63646752d7f1e64d498a38e0d5c4643</citedby><cites>FETCH-LOGICAL-c470t-44e8df5a4cf845931c2a5fa979d53253f63646752d7f1e64d498a38e0d5c4643</cites><orcidid>0000-0002-3807-5329 ; 0000-0003-3386-9813 ; 0000-0001-8802-416X ; 0000-0001-5185-8427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-019-0342-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-019-0342-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31451760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsui, C. Kimberly</creatorcontrib><creatorcontrib>Barfield, Robyn M.</creatorcontrib><creatorcontrib>Fischer, Curt R.</creatorcontrib><creatorcontrib>Morgens, David W.</creatorcontrib><creatorcontrib>Li, Amy</creatorcontrib><creatorcontrib>Smith, Benjamin A. H.</creatorcontrib><creatorcontrib>Gray, Melissa Anne</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R.</creatorcontrib><creatorcontrib>Rabuka, David</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><title>CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine–citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.
A series of genome-wide and targeted CRISPR screens uncovered regulators of antibody–drug conjugate (ADC) toxicity. Depletion of sialic acids was found to enhance ADC lysosomal delivery, in part by reducing ADC recycling.</description><subject>631/80/313</subject><subject>631/92/152</subject><subject>631/92/221</subject><subject>631/92/507</subject><subject>Ado-Trastuzumab Emtansine</subject><subject>Antibodies</subject><subject>Antineoplastic Agents, Immunological - pharmacology</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Carrier Proteins</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chemotherapy</subject><subject>Citrulline</subject><subject>Comparative analysis</subject><subject>Conjugates</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Depletion</subject><subject>Drug delivery systems</subject><subject>ErbB-2 protein</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Knockout Techniques</subject><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Immunoconjugates - toxicity</subject><subject>Internalization</subject><subject>Lysosomes</subject><subject>Maytansine - analogs & derivatives</subject><subject>Maytansine - pharmacology</subject><subject>Modulators</subject><subject>Monoclonal antibodies</subject><subject>N-Acetylneuraminic Acid - pharmacology</subject><subject>Regulatory agencies</subject><subject>Target recognition</subject><subject>Targeted cancer therapy</subject><subject>Toxicity</subject><subject>Trastuzumab</subject><subject>Trastuzumab - pharmacology</subject><subject>Valine</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UctKBDEQDKK4uvoBXmTA82jek1wEWXwsKIruPWTzGGdZJ5rMiHvzH_xDv8TI6qoHD6FDd3V1dRcAewgeIkjEUaKICVlClB-huMRrYAsxhktKuVxf_RkcgO2UZhASzpHYBAOCKEMVh1vganQ7vru5LUc6ySKZ6Fybisa6tmv8ooiu7ue6CzEVwRc6J6fBLt5f32zs68KEdtbXunNFF14a03SLHbDh9Ty53a84BJOz08noory8Ph-PTi5LQyvYZUlOWM80NV5QJgkyWDOvZSUtI5gRzwmnvGLYVh45Ti2VQhPhoGWGckqG4HhJ-9hPH5w1WW3Uc_UYmwcdFyroRv2ttM29qsOz4hLltUUmOPgiiOGpd6lTs9DHNktWGEuBJMoHzCi0RJkYUorOryYgqD4NUEsDVDZAfRqgcO7Z_y1t1fF98QzAS0DKpbZ28Wf0_6wfVm-STg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Tsui, C. Kimberly</creator><creator>Barfield, Robyn M.</creator><creator>Fischer, Curt R.</creator><creator>Morgens, David W.</creator><creator>Li, Amy</creator><creator>Smith, Benjamin A. H.</creator><creator>Gray, Melissa Anne</creator><creator>Bertozzi, Carolyn R.</creator><creator>Rabuka, David</creator><creator>Bassik, Michael C.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3807-5329</orcidid><orcidid>https://orcid.org/0000-0003-3386-9813</orcidid><orcidid>https://orcid.org/0000-0001-8802-416X</orcidid><orcidid>https://orcid.org/0000-0001-5185-8427</orcidid></search><sort><creationdate>20191001</creationdate><title>CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity</title><author>Tsui, C. Kimberly ; Barfield, Robyn M. ; Fischer, Curt R. ; Morgens, David W. ; Li, Amy ; Smith, Benjamin A. H. ; Gray, Melissa Anne ; Bertozzi, Carolyn R. ; Rabuka, David ; Bassik, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-44e8df5a4cf845931c2a5fa979d53253f63646752d7f1e64d498a38e0d5c4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/80/313</topic><topic>631/92/152</topic><topic>631/92/221</topic><topic>631/92/507</topic><topic>Ado-Trastuzumab Emtansine</topic><topic>Antibodies</topic><topic>Antineoplastic Agents, Immunological - pharmacology</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Carrier Proteins</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chemotherapy</topic><topic>Citrulline</topic><topic>Comparative analysis</topic><topic>Conjugates</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Depletion</topic><topic>Drug delivery systems</topic><topic>ErbB-2 protein</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Knockout Techniques</topic><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Immunoconjugates - toxicity</topic><topic>Internalization</topic><topic>Lysosomes</topic><topic>Maytansine - analogs & derivatives</topic><topic>Maytansine - pharmacology</topic><topic>Modulators</topic><topic>Monoclonal antibodies</topic><topic>N-Acetylneuraminic Acid - pharmacology</topic><topic>Regulatory agencies</topic><topic>Target recognition</topic><topic>Targeted cancer therapy</topic><topic>Toxicity</topic><topic>Trastuzumab</topic><topic>Trastuzumab - pharmacology</topic><topic>Valine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsui, C. Kimberly</creatorcontrib><creatorcontrib>Barfield, Robyn M.</creatorcontrib><creatorcontrib>Fischer, Curt R.</creatorcontrib><creatorcontrib>Morgens, David W.</creatorcontrib><creatorcontrib>Li, Amy</creatorcontrib><creatorcontrib>Smith, Benjamin A. H.</creatorcontrib><creatorcontrib>Gray, Melissa Anne</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R.</creatorcontrib><creatorcontrib>Rabuka, David</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsui, C. Kimberly</au><au>Barfield, Robyn M.</au><au>Fischer, Curt R.</au><au>Morgens, David W.</au><au>Li, Amy</au><au>Smith, Benjamin A. H.</au><au>Gray, Melissa Anne</au><au>Bertozzi, Carolyn R.</au><au>Rabuka, David</au><au>Bassik, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>15</volume><issue>10</issue><spage>949</spage><epage>958</epage><pages>949-958</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine–citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.
A series of genome-wide and targeted CRISPR screens uncovered regulators of antibody–drug conjugate (ADC) toxicity. Depletion of sialic acids was found to enhance ADC lysosomal delivery, in part by reducing ADC recycling.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31451760</pmid><doi>10.1038/s41589-019-0342-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3807-5329</orcidid><orcidid>https://orcid.org/0000-0003-3386-9813</orcidid><orcidid>https://orcid.org/0000-0001-8802-416X</orcidid><orcidid>https://orcid.org/0000-0001-5185-8427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2019-10, Vol.15 (10), p.949-958 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6911768 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/80/313 631/92/152 631/92/221 631/92/507 Ado-Trastuzumab Emtansine Antibodies Antineoplastic Agents, Immunological - pharmacology Biochemical Engineering Biochemistry Bioorganic Chemistry Breast cancer Cancer Carrier Proteins Cell Biology Cell Line, Tumor Chemistry Chemistry and Materials Science Chemistry/Food Science Chemotherapy Citrulline Comparative analysis Conjugates CRISPR CRISPR-Cas Systems Depletion Drug delivery systems ErbB-2 protein Gene Expression Regulation, Neoplastic Gene Knockout Techniques Genome-Wide Association Study Humans Immunoconjugates - toxicity Internalization Lysosomes Maytansine - analogs & derivatives Maytansine - pharmacology Modulators Monoclonal antibodies N-Acetylneuraminic Acid - pharmacology Regulatory agencies Target recognition Targeted cancer therapy Toxicity Trastuzumab Trastuzumab - pharmacology Valine |
title | CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR-Cas9%20screens%20identify%20regulators%20of%20antibody%E2%80%93drug%20conjugate%20toxicity&rft.jtitle=Nature%20chemical%20biology&rft.au=Tsui,%20C.%20Kimberly&rft.date=2019-10-01&rft.volume=15&rft.issue=10&rft.spage=949&rft.epage=958&rft.pages=949-958&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-019-0342-2&rft_dat=%3Cproquest_pubme%3E2298191469%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298191469&rft_id=info:pmid/31451760&rfr_iscdi=true |