CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity

Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2019-10, Vol.15 (10), p.949-958
Hauptverfasser: Tsui, C. Kimberly, Barfield, Robyn M., Fischer, Curt R., Morgens, David W., Li, Amy, Smith, Benjamin A. H., Gray, Melissa Anne, Bertozzi, Carolyn R., Rabuka, David, Bassik, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 10
container_start_page 949
container_title Nature chemical biology
container_volume 15
creator Tsui, C. Kimberly
Barfield, Robyn M.
Fischer, Curt R.
Morgens, David W.
Li, Amy
Smith, Benjamin A. H.
Gray, Melissa Anne
Bertozzi, Carolyn R.
Rabuka, David
Bassik, Michael C.
description Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine–citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets. A series of genome-wide and targeted CRISPR screens uncovered regulators of antibody–drug conjugate (ADC) toxicity. Depletion of sialic acids was found to enhance ADC lysosomal delivery, in part by reducing ADC recycling.
doi_str_mv 10.1038/s41589-019-0342-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6911768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2298191469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-44e8df5a4cf845931c2a5fa979d53253f63646752d7f1e64d498a38e0d5c4643</originalsourceid><addsrcrecordid>eNp1UctKBDEQDKK4uvoBXmTA82jek1wEWXwsKIruPWTzGGdZJ5rMiHvzH_xDv8TI6qoHD6FDd3V1dRcAewgeIkjEUaKICVlClB-huMRrYAsxhktKuVxf_RkcgO2UZhASzpHYBAOCKEMVh1vganQ7vru5LUc6ySKZ6Fybisa6tmv8ooiu7ue6CzEVwRc6J6fBLt5f32zs68KEdtbXunNFF14a03SLHbDh9Ty53a84BJOz08noory8Ph-PTi5LQyvYZUlOWM80NV5QJgkyWDOvZSUtI5gRzwmnvGLYVh45Ti2VQhPhoGWGckqG4HhJ-9hPH5w1WW3Uc_UYmwcdFyroRv2ttM29qsOz4hLltUUmOPgiiOGpd6lTs9DHNktWGEuBJMoHzCi0RJkYUorOryYgqD4NUEsDVDZAfRqgcO7Z_y1t1fF98QzAS0DKpbZ28Wf0_6wfVm-STg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298191469</pqid></control><display><type>article</type><title>CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Tsui, C. Kimberly ; Barfield, Robyn M. ; Fischer, Curt R. ; Morgens, David W. ; Li, Amy ; Smith, Benjamin A. H. ; Gray, Melissa Anne ; Bertozzi, Carolyn R. ; Rabuka, David ; Bassik, Michael C.</creator><creatorcontrib>Tsui, C. Kimberly ; Barfield, Robyn M. ; Fischer, Curt R. ; Morgens, David W. ; Li, Amy ; Smith, Benjamin A. H. ; Gray, Melissa Anne ; Bertozzi, Carolyn R. ; Rabuka, David ; Bassik, Michael C.</creatorcontrib><description>Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine–citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets. A series of genome-wide and targeted CRISPR screens uncovered regulators of antibody–drug conjugate (ADC) toxicity. Depletion of sialic acids was found to enhance ADC lysosomal delivery, in part by reducing ADC recycling.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-019-0342-2</identifier><identifier>PMID: 31451760</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/80/313 ; 631/92/152 ; 631/92/221 ; 631/92/507 ; Ado-Trastuzumab Emtansine ; Antibodies ; Antineoplastic Agents, Immunological - pharmacology ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Breast cancer ; Cancer ; Carrier Proteins ; Cell Biology ; Cell Line, Tumor ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chemotherapy ; Citrulline ; Comparative analysis ; Conjugates ; CRISPR ; CRISPR-Cas Systems ; Depletion ; Drug delivery systems ; ErbB-2 protein ; Gene Expression Regulation, Neoplastic ; Gene Knockout Techniques ; Genome-Wide Association Study ; Humans ; Immunoconjugates - toxicity ; Internalization ; Lysosomes ; Maytansine - analogs &amp; derivatives ; Maytansine - pharmacology ; Modulators ; Monoclonal antibodies ; N-Acetylneuraminic Acid - pharmacology ; Regulatory agencies ; Target recognition ; Targeted cancer therapy ; Toxicity ; Trastuzumab ; Trastuzumab - pharmacology ; Valine</subject><ispartof>Nature chemical biology, 2019-10, Vol.15 (10), p.949-958</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>Copyright Nature Publishing Group Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-44e8df5a4cf845931c2a5fa979d53253f63646752d7f1e64d498a38e0d5c4643</citedby><cites>FETCH-LOGICAL-c470t-44e8df5a4cf845931c2a5fa979d53253f63646752d7f1e64d498a38e0d5c4643</cites><orcidid>0000-0002-3807-5329 ; 0000-0003-3386-9813 ; 0000-0001-8802-416X ; 0000-0001-5185-8427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-019-0342-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-019-0342-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31451760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsui, C. Kimberly</creatorcontrib><creatorcontrib>Barfield, Robyn M.</creatorcontrib><creatorcontrib>Fischer, Curt R.</creatorcontrib><creatorcontrib>Morgens, David W.</creatorcontrib><creatorcontrib>Li, Amy</creatorcontrib><creatorcontrib>Smith, Benjamin A. H.</creatorcontrib><creatorcontrib>Gray, Melissa Anne</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R.</creatorcontrib><creatorcontrib>Rabuka, David</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><title>CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine–citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets. A series of genome-wide and targeted CRISPR screens uncovered regulators of antibody–drug conjugate (ADC) toxicity. Depletion of sialic acids was found to enhance ADC lysosomal delivery, in part by reducing ADC recycling.</description><subject>631/80/313</subject><subject>631/92/152</subject><subject>631/92/221</subject><subject>631/92/507</subject><subject>Ado-Trastuzumab Emtansine</subject><subject>Antibodies</subject><subject>Antineoplastic Agents, Immunological - pharmacology</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Carrier Proteins</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chemotherapy</subject><subject>Citrulline</subject><subject>Comparative analysis</subject><subject>Conjugates</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Depletion</subject><subject>Drug delivery systems</subject><subject>ErbB-2 protein</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Knockout Techniques</subject><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Immunoconjugates - toxicity</subject><subject>Internalization</subject><subject>Lysosomes</subject><subject>Maytansine - analogs &amp; derivatives</subject><subject>Maytansine - pharmacology</subject><subject>Modulators</subject><subject>Monoclonal antibodies</subject><subject>N-Acetylneuraminic Acid - pharmacology</subject><subject>Regulatory agencies</subject><subject>Target recognition</subject><subject>Targeted cancer therapy</subject><subject>Toxicity</subject><subject>Trastuzumab</subject><subject>Trastuzumab - pharmacology</subject><subject>Valine</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UctKBDEQDKK4uvoBXmTA82jek1wEWXwsKIruPWTzGGdZJ5rMiHvzH_xDv8TI6qoHD6FDd3V1dRcAewgeIkjEUaKICVlClB-huMRrYAsxhktKuVxf_RkcgO2UZhASzpHYBAOCKEMVh1vganQ7vru5LUc6ySKZ6Fybisa6tmv8ooiu7ue6CzEVwRc6J6fBLt5f32zs68KEdtbXunNFF14a03SLHbDh9Ty53a84BJOz08noory8Ph-PTi5LQyvYZUlOWM80NV5QJgkyWDOvZSUtI5gRzwmnvGLYVh45Ti2VQhPhoGWGckqG4HhJ-9hPH5w1WW3Uc_UYmwcdFyroRv2ttM29qsOz4hLltUUmOPgiiOGpd6lTs9DHNktWGEuBJMoHzCi0RJkYUorOryYgqD4NUEsDVDZAfRqgcO7Z_y1t1fF98QzAS0DKpbZ28Wf0_6wfVm-STg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Tsui, C. Kimberly</creator><creator>Barfield, Robyn M.</creator><creator>Fischer, Curt R.</creator><creator>Morgens, David W.</creator><creator>Li, Amy</creator><creator>Smith, Benjamin A. H.</creator><creator>Gray, Melissa Anne</creator><creator>Bertozzi, Carolyn R.</creator><creator>Rabuka, David</creator><creator>Bassik, Michael C.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3807-5329</orcidid><orcidid>https://orcid.org/0000-0003-3386-9813</orcidid><orcidid>https://orcid.org/0000-0001-8802-416X</orcidid><orcidid>https://orcid.org/0000-0001-5185-8427</orcidid></search><sort><creationdate>20191001</creationdate><title>CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity</title><author>Tsui, C. Kimberly ; Barfield, Robyn M. ; Fischer, Curt R. ; Morgens, David W. ; Li, Amy ; Smith, Benjamin A. H. ; Gray, Melissa Anne ; Bertozzi, Carolyn R. ; Rabuka, David ; Bassik, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-44e8df5a4cf845931c2a5fa979d53253f63646752d7f1e64d498a38e0d5c4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/80/313</topic><topic>631/92/152</topic><topic>631/92/221</topic><topic>631/92/507</topic><topic>Ado-Trastuzumab Emtansine</topic><topic>Antibodies</topic><topic>Antineoplastic Agents, Immunological - pharmacology</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Carrier Proteins</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chemotherapy</topic><topic>Citrulline</topic><topic>Comparative analysis</topic><topic>Conjugates</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Depletion</topic><topic>Drug delivery systems</topic><topic>ErbB-2 protein</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Knockout Techniques</topic><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Immunoconjugates - toxicity</topic><topic>Internalization</topic><topic>Lysosomes</topic><topic>Maytansine - analogs &amp; derivatives</topic><topic>Maytansine - pharmacology</topic><topic>Modulators</topic><topic>Monoclonal antibodies</topic><topic>N-Acetylneuraminic Acid - pharmacology</topic><topic>Regulatory agencies</topic><topic>Target recognition</topic><topic>Targeted cancer therapy</topic><topic>Toxicity</topic><topic>Trastuzumab</topic><topic>Trastuzumab - pharmacology</topic><topic>Valine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsui, C. Kimberly</creatorcontrib><creatorcontrib>Barfield, Robyn M.</creatorcontrib><creatorcontrib>Fischer, Curt R.</creatorcontrib><creatorcontrib>Morgens, David W.</creatorcontrib><creatorcontrib>Li, Amy</creatorcontrib><creatorcontrib>Smith, Benjamin A. H.</creatorcontrib><creatorcontrib>Gray, Melissa Anne</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R.</creatorcontrib><creatorcontrib>Rabuka, David</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsui, C. Kimberly</au><au>Barfield, Robyn M.</au><au>Fischer, Curt R.</au><au>Morgens, David W.</au><au>Li, Amy</au><au>Smith, Benjamin A. H.</au><au>Gray, Melissa Anne</au><au>Bertozzi, Carolyn R.</au><au>Rabuka, David</au><au>Bassik, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>15</volume><issue>10</issue><spage>949</spage><epage>958</epage><pages>949-958</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Antibody–drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine–citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets. A series of genome-wide and targeted CRISPR screens uncovered regulators of antibody–drug conjugate (ADC) toxicity. Depletion of sialic acids was found to enhance ADC lysosomal delivery, in part by reducing ADC recycling.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31451760</pmid><doi>10.1038/s41589-019-0342-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3807-5329</orcidid><orcidid>https://orcid.org/0000-0003-3386-9813</orcidid><orcidid>https://orcid.org/0000-0001-8802-416X</orcidid><orcidid>https://orcid.org/0000-0001-5185-8427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2019-10, Vol.15 (10), p.949-958
issn 1552-4450
1552-4469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6911768
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/80/313
631/92/152
631/92/221
631/92/507
Ado-Trastuzumab Emtansine
Antibodies
Antineoplastic Agents, Immunological - pharmacology
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Breast cancer
Cancer
Carrier Proteins
Cell Biology
Cell Line, Tumor
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chemotherapy
Citrulline
Comparative analysis
Conjugates
CRISPR
CRISPR-Cas Systems
Depletion
Drug delivery systems
ErbB-2 protein
Gene Expression Regulation, Neoplastic
Gene Knockout Techniques
Genome-Wide Association Study
Humans
Immunoconjugates - toxicity
Internalization
Lysosomes
Maytansine - analogs & derivatives
Maytansine - pharmacology
Modulators
Monoclonal antibodies
N-Acetylneuraminic Acid - pharmacology
Regulatory agencies
Target recognition
Targeted cancer therapy
Toxicity
Trastuzumab
Trastuzumab - pharmacology
Valine
title CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR-Cas9%20screens%20identify%20regulators%20of%20antibody%E2%80%93drug%20conjugate%20toxicity&rft.jtitle=Nature%20chemical%20biology&rft.au=Tsui,%20C.%20Kimberly&rft.date=2019-10-01&rft.volume=15&rft.issue=10&rft.spage=949&rft.epage=958&rft.pages=949-958&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-019-0342-2&rft_dat=%3Cproquest_pubme%3E2298191469%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298191469&rft_id=info:pmid/31451760&rfr_iscdi=true