Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics
Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-12, Vol.9 (1), p.18978-14, Article 18978 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 18978 |
container_title | Scientific reports |
container_volume | 9 |
creator | Lebedev, Mikhail A. Ossadtchi, Alexei Mill, Nil Adell Urpí, Núria Armengol Cervera, Maria R. Nicolelis, Miguel A. L. |
description | Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the primate motor cortex. Here, we evaluated this claim using Churchland’s own data and simple simulations of neuronal responses. We observed that rotational patterns occurred in neuronal populations when (1) there was a temporal sequence in peak firing rates exhibited by individual neurons, and (2) this sequence remained consistent across different experimental conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could be easily obtained using a rather arbitrary computer simulation of neural activity; modeling of any realistic properties of motor cortical responses was not needed. Additionally, arbitrary traces, such as Lissajous curves, could be easily obtained from Churchland’s data with multiple linear regression. While these observations suggest that temporal sequences of neuronal responses could be visualized as rotations with various methods, we express doubt about Churchland
et al
.’s bold assessment that such rotations are related to “an unexpected yet surprisingly simple structure in the population response”, which “explains many of the confusing features of individual neural responses”. Instead, we argue that their approach provides little, if any, insight on the underlying neuronal mechanisms employed by neuronal ensembles to encode motor behaviors in any species. |
doi_str_mv | 10.1038/s41598-019-54760-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6908571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328349350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4c540f63be12ecef11da04373d605bb39197673afca4366ff41180f03b169d1d3</originalsourceid><addsrcrecordid>eNp9kU9v3CAQxVHVqonSfIEeKqReenELHrDNpVIU9Z8UqZf2jDAedols2AJeab99yG6apj2UC4zmNw94j5DXnL3nDIYPWXCphoZx1UjRd6wRz8h5y4RsWmjb50_OZ-Qy51tWl2yV4OolOQM-AO_lcE7MVTDzIftMo6MB1xRrTTFkXMYZqbHF73050IR7NHOmZYt054szcy1MmGjexlRsXHzYHDVSLKb4GOh0CGbxNr8iLyqd8fJhvyA_P3_6cf21ufn-5dv11U1jRS9KI6wUzHUwIm_RouN8MkxAD1PH5DiC4qrvejDOGgFd55zgfGCOwcg7NfEJLsjHk-5uHRecLIaSzKx3yS8mHXQ0Xv_dCX6rN3GvO8UG2fMq8O5BIMVfK-aiF58tzrMJGNesq5cDCAWSVfTtP-htXFN17khVmwHgnmpPlE0x54Tu8TGc6fsQ9SlEXUPUxxC1qENvnn7jceR3ZBWAE5BrK2ww_bn7P7J30hWpSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325293330</pqid></control><display><type>article</type><title>Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lebedev, Mikhail A. ; Ossadtchi, Alexei ; Mill, Nil Adell ; Urpí, Núria Armengol ; Cervera, Maria R. ; Nicolelis, Miguel A. L.</creator><creatorcontrib>Lebedev, Mikhail A. ; Ossadtchi, Alexei ; Mill, Nil Adell ; Urpí, Núria Armengol ; Cervera, Maria R. ; Nicolelis, Miguel A. L.</creatorcontrib><description>Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the primate motor cortex. Here, we evaluated this claim using Churchland’s own data and simple simulations of neuronal responses. We observed that rotational patterns occurred in neuronal populations when (1) there was a temporal sequence in peak firing rates exhibited by individual neurons, and (2) this sequence remained consistent across different experimental conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could be easily obtained using a rather arbitrary computer simulation of neural activity; modeling of any realistic properties of motor cortical responses was not needed. Additionally, arbitrary traces, such as Lissajous curves, could be easily obtained from Churchland’s data with multiple linear regression. While these observations suggest that temporal sequences of neuronal responses could be visualized as rotations with various methods, we express doubt about Churchland
et al
.’s bold assessment that such rotations are related to “an unexpected yet surprisingly simple structure in the population response”, which “explains many of the confusing features of individual neural responses”. Instead, we argue that their approach provides little, if any, insight on the underlying neuronal mechanisms employed by neuronal ensembles to encode motor behaviors in any species.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-54760-4</identifier><identifier>PMID: 31831758</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/378/2629 ; Animals ; Central nervous system ; Computer Simulation ; Cortex (motor) ; Haplorhini ; Humanities and Social Sciences ; Models, Neurological ; Motor Cortex - cytology ; Motor Cortex - physiology ; multidisciplinary ; Neurons - cytology ; Neurons - physiology ; Science ; Science (multidisciplinary) ; Temporal lobe ; Temporal variations</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.18978-14, Article 18978</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4c540f63be12ecef11da04373d605bb39197673afca4366ff41180f03b169d1d3</citedby><cites>FETCH-LOGICAL-c474t-4c540f63be12ecef11da04373d605bb39197673afca4366ff41180f03b169d1d3</cites><orcidid>0000-0003-0676-7547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31831758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lebedev, Mikhail A.</creatorcontrib><creatorcontrib>Ossadtchi, Alexei</creatorcontrib><creatorcontrib>Mill, Nil Adell</creatorcontrib><creatorcontrib>Urpí, Núria Armengol</creatorcontrib><creatorcontrib>Cervera, Maria R.</creatorcontrib><creatorcontrib>Nicolelis, Miguel A. L.</creatorcontrib><title>Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the primate motor cortex. Here, we evaluated this claim using Churchland’s own data and simple simulations of neuronal responses. We observed that rotational patterns occurred in neuronal populations when (1) there was a temporal sequence in peak firing rates exhibited by individual neurons, and (2) this sequence remained consistent across different experimental conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could be easily obtained using a rather arbitrary computer simulation of neural activity; modeling of any realistic properties of motor cortical responses was not needed. Additionally, arbitrary traces, such as Lissajous curves, could be easily obtained from Churchland’s data with multiple linear regression. While these observations suggest that temporal sequences of neuronal responses could be visualized as rotations with various methods, we express doubt about Churchland
et al
.’s bold assessment that such rotations are related to “an unexpected yet surprisingly simple structure in the population response”, which “explains many of the confusing features of individual neural responses”. Instead, we argue that their approach provides little, if any, insight on the underlying neuronal mechanisms employed by neuronal ensembles to encode motor behaviors in any species.</description><subject>631/378</subject><subject>631/378/2629</subject><subject>Animals</subject><subject>Central nervous system</subject><subject>Computer Simulation</subject><subject>Cortex (motor)</subject><subject>Haplorhini</subject><subject>Humanities and Social Sciences</subject><subject>Models, Neurological</subject><subject>Motor Cortex - cytology</subject><subject>Motor Cortex - physiology</subject><subject>multidisciplinary</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temporal lobe</subject><subject>Temporal variations</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v3CAQxVHVqonSfIEeKqReenELHrDNpVIU9Z8UqZf2jDAedols2AJeab99yG6apj2UC4zmNw94j5DXnL3nDIYPWXCphoZx1UjRd6wRz8h5y4RsWmjb50_OZ-Qy51tWl2yV4OolOQM-AO_lcE7MVTDzIftMo6MB1xRrTTFkXMYZqbHF73050IR7NHOmZYt054szcy1MmGjexlRsXHzYHDVSLKb4GOh0CGbxNr8iLyqd8fJhvyA_P3_6cf21ufn-5dv11U1jRS9KI6wUzHUwIm_RouN8MkxAD1PH5DiC4qrvejDOGgFd55zgfGCOwcg7NfEJLsjHk-5uHRecLIaSzKx3yS8mHXQ0Xv_dCX6rN3GvO8UG2fMq8O5BIMVfK-aiF58tzrMJGNesq5cDCAWSVfTtP-htXFN17khVmwHgnmpPlE0x54Tu8TGc6fsQ9SlEXUPUxxC1qENvnn7jceR3ZBWAE5BrK2ww_bn7P7J30hWpSg</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Lebedev, Mikhail A.</creator><creator>Ossadtchi, Alexei</creator><creator>Mill, Nil Adell</creator><creator>Urpí, Núria Armengol</creator><creator>Cervera, Maria R.</creator><creator>Nicolelis, Miguel A. L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0676-7547</orcidid></search><sort><creationdate>20191212</creationdate><title>Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics</title><author>Lebedev, Mikhail A. ; Ossadtchi, Alexei ; Mill, Nil Adell ; Urpí, Núria Armengol ; Cervera, Maria R. ; Nicolelis, Miguel A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4c540f63be12ecef11da04373d605bb39197673afca4366ff41180f03b169d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/378</topic><topic>631/378/2629</topic><topic>Animals</topic><topic>Central nervous system</topic><topic>Computer Simulation</topic><topic>Cortex (motor)</topic><topic>Haplorhini</topic><topic>Humanities and Social Sciences</topic><topic>Models, Neurological</topic><topic>Motor Cortex - cytology</topic><topic>Motor Cortex - physiology</topic><topic>multidisciplinary</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temporal lobe</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebedev, Mikhail A.</creatorcontrib><creatorcontrib>Ossadtchi, Alexei</creatorcontrib><creatorcontrib>Mill, Nil Adell</creatorcontrib><creatorcontrib>Urpí, Núria Armengol</creatorcontrib><creatorcontrib>Cervera, Maria R.</creatorcontrib><creatorcontrib>Nicolelis, Miguel A. L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebedev, Mikhail A.</au><au>Ossadtchi, Alexei</au><au>Mill, Nil Adell</au><au>Urpí, Núria Armengol</au><au>Cervera, Maria R.</au><au>Nicolelis, Miguel A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-12</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>18978</spage><epage>14</epage><pages>18978-14</pages><artnum>18978</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the primate motor cortex. Here, we evaluated this claim using Churchland’s own data and simple simulations of neuronal responses. We observed that rotational patterns occurred in neuronal populations when (1) there was a temporal sequence in peak firing rates exhibited by individual neurons, and (2) this sequence remained consistent across different experimental conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could be easily obtained using a rather arbitrary computer simulation of neural activity; modeling of any realistic properties of motor cortical responses was not needed. Additionally, arbitrary traces, such as Lissajous curves, could be easily obtained from Churchland’s data with multiple linear regression. While these observations suggest that temporal sequences of neuronal responses could be visualized as rotations with various methods, we express doubt about Churchland
et al
.’s bold assessment that such rotations are related to “an unexpected yet surprisingly simple structure in the population response”, which “explains many of the confusing features of individual neural responses”. Instead, we argue that their approach provides little, if any, insight on the underlying neuronal mechanisms employed by neuronal ensembles to encode motor behaviors in any species.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31831758</pmid><doi>10.1038/s41598-019-54760-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0676-7547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-12, Vol.9 (1), p.18978-14, Article 18978 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6908571 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/378 631/378/2629 Animals Central nervous system Computer Simulation Cortex (motor) Haplorhini Humanities and Social Sciences Models, Neurological Motor Cortex - cytology Motor Cortex - physiology multidisciplinary Neurons - cytology Neurons - physiology Science Science (multidisciplinary) Temporal lobe Temporal variations |
title | Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20neuronal%20ensemble%20activity%20reveals%20the%20pitfalls%20and%20shortcomings%20of%20rotation%20dynamics&rft.jtitle=Scientific%20reports&rft.au=Lebedev,%20Mikhail%20A.&rft.date=2019-12-12&rft.volume=9&rft.issue=1&rft.spage=18978&rft.epage=14&rft.pages=18978-14&rft.artnum=18978&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-54760-4&rft_dat=%3Cproquest_pubme%3E2328349350%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325293330&rft_id=info:pmid/31831758&rfr_iscdi=true |