Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics

Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-12, Vol.9 (1), p.18978-14, Article 18978
Hauptverfasser: Lebedev, Mikhail A., Ossadtchi, Alexei, Mill, Nil Adell, Urpí, Núria Armengol, Cervera, Maria R., Nicolelis, Miguel A. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 18978
container_title Scientific reports
container_volume 9
creator Lebedev, Mikhail A.
Ossadtchi, Alexei
Mill, Nil Adell
Urpí, Núria Armengol
Cervera, Maria R.
Nicolelis, Miguel A. L.
description Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the primate motor cortex. Here, we evaluated this claim using Churchland’s own data and simple simulations of neuronal responses. We observed that rotational patterns occurred in neuronal populations when (1) there was a temporal sequence in peak firing rates exhibited by individual neurons, and (2) this sequence remained consistent across different experimental conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could be easily obtained using a rather arbitrary computer simulation of neural activity; modeling of any realistic properties of motor cortical responses was not needed. Additionally, arbitrary traces, such as Lissajous curves, could be easily obtained from Churchland’s data with multiple linear regression. While these observations suggest that temporal sequences of neuronal responses could be visualized as rotations with various methods, we express doubt about Churchland et al .’s bold assessment that such rotations are related to “an unexpected yet surprisingly simple structure in the population response”, which “explains many of the confusing features of individual neural responses”. Instead, we argue that their approach provides little, if any, insight on the underlying neuronal mechanisms employed by neuronal ensembles to encode motor behaviors in any species.
doi_str_mv 10.1038/s41598-019-54760-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6908571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328349350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4c540f63be12ecef11da04373d605bb39197673afca4366ff41180f03b169d1d3</originalsourceid><addsrcrecordid>eNp9kU9v3CAQxVHVqonSfIEeKqReenELHrDNpVIU9Z8UqZf2jDAedols2AJeab99yG6apj2UC4zmNw94j5DXnL3nDIYPWXCphoZx1UjRd6wRz8h5y4RsWmjb50_OZ-Qy51tWl2yV4OolOQM-AO_lcE7MVTDzIftMo6MB1xRrTTFkXMYZqbHF73050IR7NHOmZYt054szcy1MmGjexlRsXHzYHDVSLKb4GOh0CGbxNr8iLyqd8fJhvyA_P3_6cf21ufn-5dv11U1jRS9KI6wUzHUwIm_RouN8MkxAD1PH5DiC4qrvejDOGgFd55zgfGCOwcg7NfEJLsjHk-5uHRecLIaSzKx3yS8mHXQ0Xv_dCX6rN3GvO8UG2fMq8O5BIMVfK-aiF58tzrMJGNesq5cDCAWSVfTtP-htXFN17khVmwHgnmpPlE0x54Tu8TGc6fsQ9SlEXUPUxxC1qENvnn7jceR3ZBWAE5BrK2ww_bn7P7J30hWpSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325293330</pqid></control><display><type>article</type><title>Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lebedev, Mikhail A. ; Ossadtchi, Alexei ; Mill, Nil Adell ; Urpí, Núria Armengol ; Cervera, Maria R. ; Nicolelis, Miguel A. L.</creator><creatorcontrib>Lebedev, Mikhail A. ; Ossadtchi, Alexei ; Mill, Nil Adell ; Urpí, Núria Armengol ; Cervera, Maria R. ; Nicolelis, Miguel A. L.</creatorcontrib><description>Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the primate motor cortex. Here, we evaluated this claim using Churchland’s own data and simple simulations of neuronal responses. We observed that rotational patterns occurred in neuronal populations when (1) there was a temporal sequence in peak firing rates exhibited by individual neurons, and (2) this sequence remained consistent across different experimental conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could be easily obtained using a rather arbitrary computer simulation of neural activity; modeling of any realistic properties of motor cortical responses was not needed. Additionally, arbitrary traces, such as Lissajous curves, could be easily obtained from Churchland’s data with multiple linear regression. While these observations suggest that temporal sequences of neuronal responses could be visualized as rotations with various methods, we express doubt about Churchland et al .’s bold assessment that such rotations are related to “an unexpected yet surprisingly simple structure in the population response”, which “explains many of the confusing features of individual neural responses”. Instead, we argue that their approach provides little, if any, insight on the underlying neuronal mechanisms employed by neuronal ensembles to encode motor behaviors in any species.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-54760-4</identifier><identifier>PMID: 31831758</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/378/2629 ; Animals ; Central nervous system ; Computer Simulation ; Cortex (motor) ; Haplorhini ; Humanities and Social Sciences ; Models, Neurological ; Motor Cortex - cytology ; Motor Cortex - physiology ; multidisciplinary ; Neurons - cytology ; Neurons - physiology ; Science ; Science (multidisciplinary) ; Temporal lobe ; Temporal variations</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.18978-14, Article 18978</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4c540f63be12ecef11da04373d605bb39197673afca4366ff41180f03b169d1d3</citedby><cites>FETCH-LOGICAL-c474t-4c540f63be12ecef11da04373d605bb39197673afca4366ff41180f03b169d1d3</cites><orcidid>0000-0003-0676-7547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31831758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lebedev, Mikhail A.</creatorcontrib><creatorcontrib>Ossadtchi, Alexei</creatorcontrib><creatorcontrib>Mill, Nil Adell</creatorcontrib><creatorcontrib>Urpí, Núria Armengol</creatorcontrib><creatorcontrib>Cervera, Maria R.</creatorcontrib><creatorcontrib>Nicolelis, Miguel A. L.</creatorcontrib><title>Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the primate motor cortex. Here, we evaluated this claim using Churchland’s own data and simple simulations of neuronal responses. We observed that rotational patterns occurred in neuronal populations when (1) there was a temporal sequence in peak firing rates exhibited by individual neurons, and (2) this sequence remained consistent across different experimental conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could be easily obtained using a rather arbitrary computer simulation of neural activity; modeling of any realistic properties of motor cortical responses was not needed. Additionally, arbitrary traces, such as Lissajous curves, could be easily obtained from Churchland’s data with multiple linear regression. While these observations suggest that temporal sequences of neuronal responses could be visualized as rotations with various methods, we express doubt about Churchland et al .’s bold assessment that such rotations are related to “an unexpected yet surprisingly simple structure in the population response”, which “explains many of the confusing features of individual neural responses”. Instead, we argue that their approach provides little, if any, insight on the underlying neuronal mechanisms employed by neuronal ensembles to encode motor behaviors in any species.</description><subject>631/378</subject><subject>631/378/2629</subject><subject>Animals</subject><subject>Central nervous system</subject><subject>Computer Simulation</subject><subject>Cortex (motor)</subject><subject>Haplorhini</subject><subject>Humanities and Social Sciences</subject><subject>Models, Neurological</subject><subject>Motor Cortex - cytology</subject><subject>Motor Cortex - physiology</subject><subject>multidisciplinary</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temporal lobe</subject><subject>Temporal variations</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v3CAQxVHVqonSfIEeKqReenELHrDNpVIU9Z8UqZf2jDAedols2AJeab99yG6apj2UC4zmNw94j5DXnL3nDIYPWXCphoZx1UjRd6wRz8h5y4RsWmjb50_OZ-Qy51tWl2yV4OolOQM-AO_lcE7MVTDzIftMo6MB1xRrTTFkXMYZqbHF73050IR7NHOmZYt054szcy1MmGjexlRsXHzYHDVSLKb4GOh0CGbxNr8iLyqd8fJhvyA_P3_6cf21ufn-5dv11U1jRS9KI6wUzHUwIm_RouN8MkxAD1PH5DiC4qrvejDOGgFd55zgfGCOwcg7NfEJLsjHk-5uHRecLIaSzKx3yS8mHXQ0Xv_dCX6rN3GvO8UG2fMq8O5BIMVfK-aiF58tzrMJGNesq5cDCAWSVfTtP-htXFN17khVmwHgnmpPlE0x54Tu8TGc6fsQ9SlEXUPUxxC1qENvnn7jceR3ZBWAE5BrK2ww_bn7P7J30hWpSg</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Lebedev, Mikhail A.</creator><creator>Ossadtchi, Alexei</creator><creator>Mill, Nil Adell</creator><creator>Urpí, Núria Armengol</creator><creator>Cervera, Maria R.</creator><creator>Nicolelis, Miguel A. L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0676-7547</orcidid></search><sort><creationdate>20191212</creationdate><title>Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics</title><author>Lebedev, Mikhail A. ; Ossadtchi, Alexei ; Mill, Nil Adell ; Urpí, Núria Armengol ; Cervera, Maria R. ; Nicolelis, Miguel A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4c540f63be12ecef11da04373d605bb39197673afca4366ff41180f03b169d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/378</topic><topic>631/378/2629</topic><topic>Animals</topic><topic>Central nervous system</topic><topic>Computer Simulation</topic><topic>Cortex (motor)</topic><topic>Haplorhini</topic><topic>Humanities and Social Sciences</topic><topic>Models, Neurological</topic><topic>Motor Cortex - cytology</topic><topic>Motor Cortex - physiology</topic><topic>multidisciplinary</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temporal lobe</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebedev, Mikhail A.</creatorcontrib><creatorcontrib>Ossadtchi, Alexei</creatorcontrib><creatorcontrib>Mill, Nil Adell</creatorcontrib><creatorcontrib>Urpí, Núria Armengol</creatorcontrib><creatorcontrib>Cervera, Maria R.</creatorcontrib><creatorcontrib>Nicolelis, Miguel A. L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebedev, Mikhail A.</au><au>Ossadtchi, Alexei</au><au>Mill, Nil Adell</au><au>Urpí, Núria Armengol</au><au>Cervera, Maria R.</au><au>Nicolelis, Miguel A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-12</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>18978</spage><epage>14</epage><pages>18978-14</pages><artnum>18978</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the primate motor cortex. Here, we evaluated this claim using Churchland’s own data and simple simulations of neuronal responses. We observed that rotational patterns occurred in neuronal populations when (1) there was a temporal sequence in peak firing rates exhibited by individual neurons, and (2) this sequence remained consistent across different experimental conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could be easily obtained using a rather arbitrary computer simulation of neural activity; modeling of any realistic properties of motor cortical responses was not needed. Additionally, arbitrary traces, such as Lissajous curves, could be easily obtained from Churchland’s data with multiple linear regression. While these observations suggest that temporal sequences of neuronal responses could be visualized as rotations with various methods, we express doubt about Churchland et al .’s bold assessment that such rotations are related to “an unexpected yet surprisingly simple structure in the population response”, which “explains many of the confusing features of individual neural responses”. Instead, we argue that their approach provides little, if any, insight on the underlying neuronal mechanisms employed by neuronal ensembles to encode motor behaviors in any species.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31831758</pmid><doi>10.1038/s41598-019-54760-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0676-7547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-12, Vol.9 (1), p.18978-14, Article 18978
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6908571
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/378
631/378/2629
Animals
Central nervous system
Computer Simulation
Cortex (motor)
Haplorhini
Humanities and Social Sciences
Models, Neurological
Motor Cortex - cytology
Motor Cortex - physiology
multidisciplinary
Neurons - cytology
Neurons - physiology
Science
Science (multidisciplinary)
Temporal lobe
Temporal variations
title Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20neuronal%20ensemble%20activity%20reveals%20the%20pitfalls%20and%20shortcomings%20of%20rotation%20dynamics&rft.jtitle=Scientific%20reports&rft.au=Lebedev,%20Mikhail%20A.&rft.date=2019-12-12&rft.volume=9&rft.issue=1&rft.spage=18978&rft.epage=14&rft.pages=18978-14&rft.artnum=18978&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-54760-4&rft_dat=%3Cproquest_pubme%3E2328349350%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325293330&rft_id=info:pmid/31831758&rfr_iscdi=true