Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy

Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2019-12, Vol.27 (12), p.2147-2157
Hauptverfasser: Selvaraj, Sridhar, Dhoke, Neha R., Kiley, James, Mateos-Aierdi, Alba Judith, Tungtur, Sudheer, Mondragon-Gonzalez, Ricardo, Killeen, Grace, Oliveira, Vanessa K.P., López de Munain, Adolfo, Perlingeiro, Rita C.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2157
container_issue 12
container_start_page 2147
container_title Molecular therapy
container_volume 27
creator Selvaraj, Sridhar
Dhoke, Neha R.
Kiley, James
Mateos-Aierdi, Alba Judith
Tungtur, Sudheer
Mondragon-Gonzalez, Ricardo
Killeen, Grace
Oliveira, Vanessa K.P.
López de Munain, Adolfo
Perlingeiro, Rita C.R.
description Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A. Selvaraj et al. show that three different CAPN3 mutations can be corrected in LGMD2A patient-specific iPSCs using a single CRISPR-Cas9-based genome-editing strategy. This gene correction rescues CAPN3 expression in the gene-corrected iPSC derivatives both in vitro and in vivo.
doi_str_mv 10.1016/j.ymthe.2019.08.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6904833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001619303946</els_id><sourcerecordid>2321612796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-61e8a64b8af665af5a0fc81e96f80c8c6dfe43e94f9dd16e86a35cbc05219d043</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhiPEiv2AX4CELHHhkuCP2DgHkKrsUpCKWGnL2XKdcesqiYOdVOq_x6FLBRz25JH8vjPzzpNlrwkuCCbi_b44duMOCopJVWBZYEKeZVeEU55jTMvn55qIy-w6xn2qCK_Ei-ySEY4JZuwq2y2hB1T7EMCMzvfIW7RafrulC3SvRwf9mD8MYJx1Brn7hzoi6wNKY9EtHKD1Q5cks2mtwxZGaNBiGn3rt36KqIa2ResdBD0cX2YXVrcRXj2-N9mPz3fr-ku--r78Wi9WueGcjbkgILUoN1JbIbi2XGNrJIFKWImNNKKxUDKoSls1DREghWbcbAzmlFQNLtlN9unUd5g2HTQmrRd0q4bgOh2Oymun_v3p3U5t_UGJCpeSsdTg3WOD4H9OEEfVuWhSEt1DCqUolRITzqt51tv_pHs_hT7FU5RRIgj9UImkYieVCT7GAPa8DMFqJqn26jdJNZNUWKrEKbne_J3j7PmDLgk-ngSQrnlwEFQ0iZeBxs0sVePdkwN-AfmtsOc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321612796</pqid></control><display><type>article</type><title>Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Selvaraj, Sridhar ; Dhoke, Neha R. ; Kiley, James ; Mateos-Aierdi, Alba Judith ; Tungtur, Sudheer ; Mondragon-Gonzalez, Ricardo ; Killeen, Grace ; Oliveira, Vanessa K.P. ; López de Munain, Adolfo ; Perlingeiro, Rita C.R.</creator><creatorcontrib>Selvaraj, Sridhar ; Dhoke, Neha R. ; Kiley, James ; Mateos-Aierdi, Alba Judith ; Tungtur, Sudheer ; Mondragon-Gonzalez, Ricardo ; Killeen, Grace ; Oliveira, Vanessa K.P. ; López de Munain, Adolfo ; Perlingeiro, Rita C.R.</creatorcontrib><description>Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A. Selvaraj et al. show that three different CAPN3 mutations can be corrected in LGMD2A patient-specific iPSCs using a single CRISPR-Cas9-based genome-editing strategy. This gene correction rescues CAPN3 expression in the gene-corrected iPSC derivatives both in vitro and in vivo.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2019.08.011</identifier><identifier>PMID: 31501033</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autografts ; autologous cell therapy ; Calpain ; Calpain - physiology ; Calpain 3 ; CAPN3 ; Cell- and Tissue-Based Therapy - methods ; Cells, Cultured ; Cloning ; CRISPR ; Deoxyribonucleic acid ; DNA ; Experiments ; Fibroblasts ; gene correction ; Gene expression ; Genome editing ; Genomes ; Hereditary diseases ; Humans ; Immunodeficiency ; induced pluripotent stem cells ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; iPSCs ; limb girdle muscular dystrophy type 2A ; Male ; Mice ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; mRNA ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - pathology ; Muscle Proteins - physiology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscular Dystrophies, Limb-Girdle - genetics ; Muscular Dystrophies, Limb-Girdle - pathology ; Muscular Dystrophies, Limb-Girdle - therapy ; Muscular dystrophy ; Musculoskeletal system ; Mutation ; myogenic progenitors ; Original ; Pluripotency ; Protein expression ; Proteins ; Stem cells ; Transplantation ; Transplantation, Autologous</subject><ispartof>Molecular therapy, 2019-12, Vol.27 (12), p.2147-2157</ispartof><rights>2019 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2019 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2019. The American Society of Gene and Cell Therapy</rights><rights>2019 The American Society of Gene and Cell Therapy. 2019 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-61e8a64b8af665af5a0fc81e96f80c8c6dfe43e94f9dd16e86a35cbc05219d043</citedby><cites>FETCH-LOGICAL-c553t-61e8a64b8af665af5a0fc81e96f80c8c6dfe43e94f9dd16e86a35cbc05219d043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904833/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904833/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31501033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Selvaraj, Sridhar</creatorcontrib><creatorcontrib>Dhoke, Neha R.</creatorcontrib><creatorcontrib>Kiley, James</creatorcontrib><creatorcontrib>Mateos-Aierdi, Alba Judith</creatorcontrib><creatorcontrib>Tungtur, Sudheer</creatorcontrib><creatorcontrib>Mondragon-Gonzalez, Ricardo</creatorcontrib><creatorcontrib>Killeen, Grace</creatorcontrib><creatorcontrib>Oliveira, Vanessa K.P.</creatorcontrib><creatorcontrib>López de Munain, Adolfo</creatorcontrib><creatorcontrib>Perlingeiro, Rita C.R.</creatorcontrib><title>Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A. Selvaraj et al. show that three different CAPN3 mutations can be corrected in LGMD2A patient-specific iPSCs using a single CRISPR-Cas9-based genome-editing strategy. This gene correction rescues CAPN3 expression in the gene-corrected iPSC derivatives both in vitro and in vivo.</description><subject>Animals</subject><subject>Autografts</subject><subject>autologous cell therapy</subject><subject>Calpain</subject><subject>Calpain - physiology</subject><subject>Calpain 3</subject><subject>CAPN3</subject><subject>Cell- and Tissue-Based Therapy - methods</subject><subject>Cells, Cultured</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Experiments</subject><subject>Fibroblasts</subject><subject>gene correction</subject><subject>Gene expression</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Hereditary diseases</subject><subject>Humans</subject><subject>Immunodeficiency</subject><subject>induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>iPSCs</subject><subject>limb girdle muscular dystrophy type 2A</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>mRNA</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscle Proteins - physiology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscular Dystrophies, Limb-Girdle - genetics</subject><subject>Muscular Dystrophies, Limb-Girdle - pathology</subject><subject>Muscular Dystrophies, Limb-Girdle - therapy</subject><subject>Muscular dystrophy</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>myogenic progenitors</subject><subject>Original</subject><subject>Pluripotency</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Stem cells</subject><subject>Transplantation</subject><subject>Transplantation, Autologous</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2P0zAQhiPEiv2AX4CELHHhkuCP2DgHkKrsUpCKWGnL2XKdcesqiYOdVOq_x6FLBRz25JH8vjPzzpNlrwkuCCbi_b44duMOCopJVWBZYEKeZVeEU55jTMvn55qIy-w6xn2qCK_Ei-ySEY4JZuwq2y2hB1T7EMCMzvfIW7RafrulC3SvRwf9mD8MYJx1Brn7hzoi6wNKY9EtHKD1Q5cks2mtwxZGaNBiGn3rt36KqIa2ResdBD0cX2YXVrcRXj2-N9mPz3fr-ku--r78Wi9WueGcjbkgILUoN1JbIbi2XGNrJIFKWImNNKKxUDKoSls1DREghWbcbAzmlFQNLtlN9unUd5g2HTQmrRd0q4bgOh2Oymun_v3p3U5t_UGJCpeSsdTg3WOD4H9OEEfVuWhSEt1DCqUolRITzqt51tv_pHs_hT7FU5RRIgj9UImkYieVCT7GAPa8DMFqJqn26jdJNZNUWKrEKbne_J3j7PmDLgk-ngSQrnlwEFQ0iZeBxs0sVePdkwN-AfmtsOc</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Selvaraj, Sridhar</creator><creator>Dhoke, Neha R.</creator><creator>Kiley, James</creator><creator>Mateos-Aierdi, Alba Judith</creator><creator>Tungtur, Sudheer</creator><creator>Mondragon-Gonzalez, Ricardo</creator><creator>Killeen, Grace</creator><creator>Oliveira, Vanessa K.P.</creator><creator>López de Munain, Adolfo</creator><creator>Perlingeiro, Rita C.R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene &amp; Cell Therapy</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191204</creationdate><title>Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy</title><author>Selvaraj, Sridhar ; Dhoke, Neha R. ; Kiley, James ; Mateos-Aierdi, Alba Judith ; Tungtur, Sudheer ; Mondragon-Gonzalez, Ricardo ; Killeen, Grace ; Oliveira, Vanessa K.P. ; López de Munain, Adolfo ; Perlingeiro, Rita C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-61e8a64b8af665af5a0fc81e96f80c8c6dfe43e94f9dd16e86a35cbc05219d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Autografts</topic><topic>autologous cell therapy</topic><topic>Calpain</topic><topic>Calpain - physiology</topic><topic>Calpain 3</topic><topic>CAPN3</topic><topic>Cell- and Tissue-Based Therapy - methods</topic><topic>Cells, Cultured</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Experiments</topic><topic>Fibroblasts</topic><topic>gene correction</topic><topic>Gene expression</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Hereditary diseases</topic><topic>Humans</topic><topic>Immunodeficiency</topic><topic>induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>iPSCs</topic><topic>limb girdle muscular dystrophy type 2A</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>mRNA</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscle Proteins - physiology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscular Dystrophies, Limb-Girdle - genetics</topic><topic>Muscular Dystrophies, Limb-Girdle - pathology</topic><topic>Muscular Dystrophies, Limb-Girdle - therapy</topic><topic>Muscular dystrophy</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>myogenic progenitors</topic><topic>Original</topic><topic>Pluripotency</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Stem cells</topic><topic>Transplantation</topic><topic>Transplantation, Autologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvaraj, Sridhar</creatorcontrib><creatorcontrib>Dhoke, Neha R.</creatorcontrib><creatorcontrib>Kiley, James</creatorcontrib><creatorcontrib>Mateos-Aierdi, Alba Judith</creatorcontrib><creatorcontrib>Tungtur, Sudheer</creatorcontrib><creatorcontrib>Mondragon-Gonzalez, Ricardo</creatorcontrib><creatorcontrib>Killeen, Grace</creatorcontrib><creatorcontrib>Oliveira, Vanessa K.P.</creatorcontrib><creatorcontrib>López de Munain, Adolfo</creatorcontrib><creatorcontrib>Perlingeiro, Rita C.R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvaraj, Sridhar</au><au>Dhoke, Neha R.</au><au>Kiley, James</au><au>Mateos-Aierdi, Alba Judith</au><au>Tungtur, Sudheer</au><au>Mondragon-Gonzalez, Ricardo</au><au>Killeen, Grace</au><au>Oliveira, Vanessa K.P.</au><au>López de Munain, Adolfo</au><au>Perlingeiro, Rita C.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2019-12-04</date><risdate>2019</risdate><volume>27</volume><issue>12</issue><spage>2147</spage><epage>2157</epage><pages>2147-2157</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A. Selvaraj et al. show that three different CAPN3 mutations can be corrected in LGMD2A patient-specific iPSCs using a single CRISPR-Cas9-based genome-editing strategy. This gene correction rescues CAPN3 expression in the gene-corrected iPSC derivatives both in vitro and in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31501033</pmid><doi>10.1016/j.ymthe.2019.08.011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2019-12, Vol.27 (12), p.2147-2157
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6904833
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Autografts
autologous cell therapy
Calpain
Calpain - physiology
Calpain 3
CAPN3
Cell- and Tissue-Based Therapy - methods
Cells, Cultured
Cloning
CRISPR
Deoxyribonucleic acid
DNA
Experiments
Fibroblasts
gene correction
Gene expression
Genome editing
Genomes
Hereditary diseases
Humans
Immunodeficiency
induced pluripotent stem cells
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
iPSCs
limb girdle muscular dystrophy type 2A
Male
Mice
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
mRNA
Muscle Fibers, Skeletal - metabolism
Muscle Fibers, Skeletal - pathology
Muscle Proteins - physiology
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Muscular Dystrophies, Limb-Girdle - genetics
Muscular Dystrophies, Limb-Girdle - pathology
Muscular Dystrophies, Limb-Girdle - therapy
Muscular dystrophy
Musculoskeletal system
Mutation
myogenic progenitors
Original
Pluripotency
Protein expression
Proteins
Stem cells
Transplantation
Transplantation, Autologous
title Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Correction%20of%20LGMD2A%20Patient-Specific%20iPSCs%20for%20the%20Development%20of%20Targeted%20Autologous%20Cell%20Therapy&rft.jtitle=Molecular%20therapy&rft.au=Selvaraj,%20Sridhar&rft.date=2019-12-04&rft.volume=27&rft.issue=12&rft.spage=2147&rft.epage=2157&rft.pages=2147-2157&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2019.08.011&rft_dat=%3Cproquest_pubme%3E2321612796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321612796&rft_id=info:pmid/31501033&rft_els_id=S1525001619303946&rfr_iscdi=true