Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy
Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2019-12, Vol.27 (12), p.2147-2157 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2157 |
---|---|
container_issue | 12 |
container_start_page | 2147 |
container_title | Molecular therapy |
container_volume | 27 |
creator | Selvaraj, Sridhar Dhoke, Neha R. Kiley, James Mateos-Aierdi, Alba Judith Tungtur, Sudheer Mondragon-Gonzalez, Ricardo Killeen, Grace Oliveira, Vanessa K.P. López de Munain, Adolfo Perlingeiro, Rita C.R. |
description | Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A.
Selvaraj et al. show that three different CAPN3 mutations can be corrected in LGMD2A patient-specific iPSCs using a single CRISPR-Cas9-based genome-editing strategy. This gene correction rescues CAPN3 expression in the gene-corrected iPSC derivatives both in vitro and in vivo. |
doi_str_mv | 10.1016/j.ymthe.2019.08.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6904833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001619303946</els_id><sourcerecordid>2321612796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-61e8a64b8af665af5a0fc81e96f80c8c6dfe43e94f9dd16e86a35cbc05219d043</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhiPEiv2AX4CELHHhkuCP2DgHkKrsUpCKWGnL2XKdcesqiYOdVOq_x6FLBRz25JH8vjPzzpNlrwkuCCbi_b44duMOCopJVWBZYEKeZVeEU55jTMvn55qIy-w6xn2qCK_Ei-ySEY4JZuwq2y2hB1T7EMCMzvfIW7RafrulC3SvRwf9mD8MYJx1Brn7hzoi6wNKY9EtHKD1Q5cks2mtwxZGaNBiGn3rt36KqIa2ResdBD0cX2YXVrcRXj2-N9mPz3fr-ku--r78Wi9WueGcjbkgILUoN1JbIbi2XGNrJIFKWImNNKKxUDKoSls1DREghWbcbAzmlFQNLtlN9unUd5g2HTQmrRd0q4bgOh2Oymun_v3p3U5t_UGJCpeSsdTg3WOD4H9OEEfVuWhSEt1DCqUolRITzqt51tv_pHs_hT7FU5RRIgj9UImkYieVCT7GAPa8DMFqJqn26jdJNZNUWKrEKbne_J3j7PmDLgk-ngSQrnlwEFQ0iZeBxs0sVePdkwN-AfmtsOc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321612796</pqid></control><display><type>article</type><title>Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Selvaraj, Sridhar ; Dhoke, Neha R. ; Kiley, James ; Mateos-Aierdi, Alba Judith ; Tungtur, Sudheer ; Mondragon-Gonzalez, Ricardo ; Killeen, Grace ; Oliveira, Vanessa K.P. ; López de Munain, Adolfo ; Perlingeiro, Rita C.R.</creator><creatorcontrib>Selvaraj, Sridhar ; Dhoke, Neha R. ; Kiley, James ; Mateos-Aierdi, Alba Judith ; Tungtur, Sudheer ; Mondragon-Gonzalez, Ricardo ; Killeen, Grace ; Oliveira, Vanessa K.P. ; López de Munain, Adolfo ; Perlingeiro, Rita C.R.</creatorcontrib><description>Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A.
Selvaraj et al. show that three different CAPN3 mutations can be corrected in LGMD2A patient-specific iPSCs using a single CRISPR-Cas9-based genome-editing strategy. This gene correction rescues CAPN3 expression in the gene-corrected iPSC derivatives both in vitro and in vivo.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2019.08.011</identifier><identifier>PMID: 31501033</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autografts ; autologous cell therapy ; Calpain ; Calpain - physiology ; Calpain 3 ; CAPN3 ; Cell- and Tissue-Based Therapy - methods ; Cells, Cultured ; Cloning ; CRISPR ; Deoxyribonucleic acid ; DNA ; Experiments ; Fibroblasts ; gene correction ; Gene expression ; Genome editing ; Genomes ; Hereditary diseases ; Humans ; Immunodeficiency ; induced pluripotent stem cells ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; iPSCs ; limb girdle muscular dystrophy type 2A ; Male ; Mice ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; mRNA ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - pathology ; Muscle Proteins - physiology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscular Dystrophies, Limb-Girdle - genetics ; Muscular Dystrophies, Limb-Girdle - pathology ; Muscular Dystrophies, Limb-Girdle - therapy ; Muscular dystrophy ; Musculoskeletal system ; Mutation ; myogenic progenitors ; Original ; Pluripotency ; Protein expression ; Proteins ; Stem cells ; Transplantation ; Transplantation, Autologous</subject><ispartof>Molecular therapy, 2019-12, Vol.27 (12), p.2147-2157</ispartof><rights>2019 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2019 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2019. The American Society of Gene and Cell Therapy</rights><rights>2019 The American Society of Gene and Cell Therapy. 2019 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-61e8a64b8af665af5a0fc81e96f80c8c6dfe43e94f9dd16e86a35cbc05219d043</citedby><cites>FETCH-LOGICAL-c553t-61e8a64b8af665af5a0fc81e96f80c8c6dfe43e94f9dd16e86a35cbc05219d043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904833/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904833/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31501033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Selvaraj, Sridhar</creatorcontrib><creatorcontrib>Dhoke, Neha R.</creatorcontrib><creatorcontrib>Kiley, James</creatorcontrib><creatorcontrib>Mateos-Aierdi, Alba Judith</creatorcontrib><creatorcontrib>Tungtur, Sudheer</creatorcontrib><creatorcontrib>Mondragon-Gonzalez, Ricardo</creatorcontrib><creatorcontrib>Killeen, Grace</creatorcontrib><creatorcontrib>Oliveira, Vanessa K.P.</creatorcontrib><creatorcontrib>López de Munain, Adolfo</creatorcontrib><creatorcontrib>Perlingeiro, Rita C.R.</creatorcontrib><title>Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A.
Selvaraj et al. show that three different CAPN3 mutations can be corrected in LGMD2A patient-specific iPSCs using a single CRISPR-Cas9-based genome-editing strategy. This gene correction rescues CAPN3 expression in the gene-corrected iPSC derivatives both in vitro and in vivo.</description><subject>Animals</subject><subject>Autografts</subject><subject>autologous cell therapy</subject><subject>Calpain</subject><subject>Calpain - physiology</subject><subject>Calpain 3</subject><subject>CAPN3</subject><subject>Cell- and Tissue-Based Therapy - methods</subject><subject>Cells, Cultured</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Experiments</subject><subject>Fibroblasts</subject><subject>gene correction</subject><subject>Gene expression</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Hereditary diseases</subject><subject>Humans</subject><subject>Immunodeficiency</subject><subject>induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>iPSCs</subject><subject>limb girdle muscular dystrophy type 2A</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>mRNA</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscle Proteins - physiology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscular Dystrophies, Limb-Girdle - genetics</subject><subject>Muscular Dystrophies, Limb-Girdle - pathology</subject><subject>Muscular Dystrophies, Limb-Girdle - therapy</subject><subject>Muscular dystrophy</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>myogenic progenitors</subject><subject>Original</subject><subject>Pluripotency</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Stem cells</subject><subject>Transplantation</subject><subject>Transplantation, Autologous</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2P0zAQhiPEiv2AX4CELHHhkuCP2DgHkKrsUpCKWGnL2XKdcesqiYOdVOq_x6FLBRz25JH8vjPzzpNlrwkuCCbi_b44duMOCopJVWBZYEKeZVeEU55jTMvn55qIy-w6xn2qCK_Ei-ySEY4JZuwq2y2hB1T7EMCMzvfIW7RafrulC3SvRwf9mD8MYJx1Brn7hzoi6wNKY9EtHKD1Q5cks2mtwxZGaNBiGn3rt36KqIa2ResdBD0cX2YXVrcRXj2-N9mPz3fr-ku--r78Wi9WueGcjbkgILUoN1JbIbi2XGNrJIFKWImNNKKxUDKoSls1DREghWbcbAzmlFQNLtlN9unUd5g2HTQmrRd0q4bgOh2Oymun_v3p3U5t_UGJCpeSsdTg3WOD4H9OEEfVuWhSEt1DCqUolRITzqt51tv_pHs_hT7FU5RRIgj9UImkYieVCT7GAPa8DMFqJqn26jdJNZNUWKrEKbne_J3j7PmDLgk-ngSQrnlwEFQ0iZeBxs0sVePdkwN-AfmtsOc</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Selvaraj, Sridhar</creator><creator>Dhoke, Neha R.</creator><creator>Kiley, James</creator><creator>Mateos-Aierdi, Alba Judith</creator><creator>Tungtur, Sudheer</creator><creator>Mondragon-Gonzalez, Ricardo</creator><creator>Killeen, Grace</creator><creator>Oliveira, Vanessa K.P.</creator><creator>López de Munain, Adolfo</creator><creator>Perlingeiro, Rita C.R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene & Cell Therapy</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191204</creationdate><title>Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy</title><author>Selvaraj, Sridhar ; Dhoke, Neha R. ; Kiley, James ; Mateos-Aierdi, Alba Judith ; Tungtur, Sudheer ; Mondragon-Gonzalez, Ricardo ; Killeen, Grace ; Oliveira, Vanessa K.P. ; López de Munain, Adolfo ; Perlingeiro, Rita C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-61e8a64b8af665af5a0fc81e96f80c8c6dfe43e94f9dd16e86a35cbc05219d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Autografts</topic><topic>autologous cell therapy</topic><topic>Calpain</topic><topic>Calpain - physiology</topic><topic>Calpain 3</topic><topic>CAPN3</topic><topic>Cell- and Tissue-Based Therapy - methods</topic><topic>Cells, Cultured</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Experiments</topic><topic>Fibroblasts</topic><topic>gene correction</topic><topic>Gene expression</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Hereditary diseases</topic><topic>Humans</topic><topic>Immunodeficiency</topic><topic>induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>iPSCs</topic><topic>limb girdle muscular dystrophy type 2A</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>mRNA</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscle Proteins - physiology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscular Dystrophies, Limb-Girdle - genetics</topic><topic>Muscular Dystrophies, Limb-Girdle - pathology</topic><topic>Muscular Dystrophies, Limb-Girdle - therapy</topic><topic>Muscular dystrophy</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>myogenic progenitors</topic><topic>Original</topic><topic>Pluripotency</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Stem cells</topic><topic>Transplantation</topic><topic>Transplantation, Autologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvaraj, Sridhar</creatorcontrib><creatorcontrib>Dhoke, Neha R.</creatorcontrib><creatorcontrib>Kiley, James</creatorcontrib><creatorcontrib>Mateos-Aierdi, Alba Judith</creatorcontrib><creatorcontrib>Tungtur, Sudheer</creatorcontrib><creatorcontrib>Mondragon-Gonzalez, Ricardo</creatorcontrib><creatorcontrib>Killeen, Grace</creatorcontrib><creatorcontrib>Oliveira, Vanessa K.P.</creatorcontrib><creatorcontrib>López de Munain, Adolfo</creatorcontrib><creatorcontrib>Perlingeiro, Rita C.R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvaraj, Sridhar</au><au>Dhoke, Neha R.</au><au>Kiley, James</au><au>Mateos-Aierdi, Alba Judith</au><au>Tungtur, Sudheer</au><au>Mondragon-Gonzalez, Ricardo</au><au>Killeen, Grace</au><au>Oliveira, Vanessa K.P.</au><au>López de Munain, Adolfo</au><au>Perlingeiro, Rita C.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2019-12-04</date><risdate>2019</risdate><volume>27</volume><issue>12</issue><spage>2147</spage><epage>2157</epage><pages>2147-2157</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A.
Selvaraj et al. show that three different CAPN3 mutations can be corrected in LGMD2A patient-specific iPSCs using a single CRISPR-Cas9-based genome-editing strategy. This gene correction rescues CAPN3 expression in the gene-corrected iPSC derivatives both in vitro and in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31501033</pmid><doi>10.1016/j.ymthe.2019.08.011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2019-12, Vol.27 (12), p.2147-2157 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6904833 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Autografts autologous cell therapy Calpain Calpain - physiology Calpain 3 CAPN3 Cell- and Tissue-Based Therapy - methods Cells, Cultured Cloning CRISPR Deoxyribonucleic acid DNA Experiments Fibroblasts gene correction Gene expression Genome editing Genomes Hereditary diseases Humans Immunodeficiency induced pluripotent stem cells Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism iPSCs limb girdle muscular dystrophy type 2A Male Mice Mice, Inbred NOD Mice, Knockout Mice, SCID mRNA Muscle Fibers, Skeletal - metabolism Muscle Fibers, Skeletal - pathology Muscle Proteins - physiology Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Muscular Dystrophies, Limb-Girdle - genetics Muscular Dystrophies, Limb-Girdle - pathology Muscular Dystrophies, Limb-Girdle - therapy Muscular dystrophy Musculoskeletal system Mutation myogenic progenitors Original Pluripotency Protein expression Proteins Stem cells Transplantation Transplantation, Autologous |
title | Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Correction%20of%20LGMD2A%20Patient-Specific%20iPSCs%20for%20the%20Development%20of%20Targeted%20Autologous%20Cell%20Therapy&rft.jtitle=Molecular%20therapy&rft.au=Selvaraj,%20Sridhar&rft.date=2019-12-04&rft.volume=27&rft.issue=12&rft.spage=2147&rft.epage=2157&rft.pages=2147-2157&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2019.08.011&rft_dat=%3Cproquest_pubme%3E2321612796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321612796&rft_id=info:pmid/31501033&rft_els_id=S1525001619303946&rfr_iscdi=true |