Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1)

Hydrogen-atom transfer (HAT) from a substrate carbon to an iron­(IV)-oxo (ferryl) intermediate initiates a diverse array of enzymatic transformations. For outcomes other than hydroxylation, coupling of the resultant carbon radical and hydroxo ligand (oxygen rebound) must generally be averted. A rece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-06, Vol.141 (25), p.9964-9979
Hauptverfasser: Dunham, Noah P, Del Río Pantoja, José M, Zhang, Bo, Rajakovich, Lauren J, Allen, Benjamin D, Krebs, Carsten, Boal, Amie K, Bollinger, J. Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9979
container_issue 25
container_start_page 9964
container_title Journal of the American Chemical Society
container_volume 141
creator Dunham, Noah P
Del Río Pantoja, José M
Zhang, Bo
Rajakovich, Lauren J
Allen, Benjamin D
Krebs, Carsten
Boal, Amie K
Bollinger, J. Martin
description Hydrogen-atom transfer (HAT) from a substrate carbon to an iron­(IV)-oxo (ferryl) intermediate initiates a diverse array of enzymatic transformations. For outcomes other than hydroxylation, coupling of the resultant carbon radical and hydroxo ligand (oxygen rebound) must generally be averted. A recent study of FtmOx1, a fungal iron­(II)- and 2-(oxo)­glutarate-dependent oxygenase that installs the endoperoxide of verruculogen by adding O2 between carbons 21 and 27 of fumitremorgin B, posited that tyrosine (Tyr or Y) 224 serves as HAT intermediary to separate the C21 radical (C21•) and Fe­(III)–OH HAT products and prevent rebound. Our reinvestigation of the FtmOx1 mechanism revealed, instead, direct HAT from C21 to the ferryl complex and surprisingly competitive rebound. The C21-hydroxylated (rebound) product, which undergoes deprenylation, predominates when low [O2] slows C21•–O2 coupling in the next step of the endoperoxidation pathway. This pathway culminates with addition of the C21–O–O• peroxyl adduct to olefinic C27 followed by HAT to the C26• from a Tyr. The last step results in sequential accumulation of Tyr radicals, which are suppressed without detriment to turnover by inclusion of the reductant, ascorbate. Replacement of each of four candidates for the proximal C26 H• donor (including Y224) with phenylalanine (F) revealed that only the Y68F variant (i) fails to accumulate the first Tyr• and (ii) makes an altered major product, identifying Y68 as the donor. The implied proximities of C21 to the iron cofactor and C26 to Y68 support a new docking model of the enzyme–substrate complex that is consistent with all available data.
doi_str_mv 10.1021/jacs.9b03567
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6901024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232114806</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-cab49c08d7f4cdb264b9290fa8dece431d8427ce6d5ed1c75b20dc1de28163df3</originalsourceid><addsrcrecordid>eNptUU1rHCEYltLQbJPeei7SUwKdRB3HmbkUQj6aQCCHpoWexNF3dl1mdatOyEB_fN3uJmmhJ1Gfj_d9HoTeU3JCCaOnS6XjSduRshL1KzSjFSNFRZl4jWaEEFbUjSj30dsYl_nKWUPfoP2SUlqLqp6hX9eTCX4ODl94p5L1Dndjws4nfNbFFJTevk1Y4fsp-Ggd4KMfojnGZgzWzfGlM34NwT9aA_jGxaSGQT2RvkMIox6HPw5fJ5cWKmb-VVrdPdLjQ7TXqyHCu915gL5dXd6fXxe3d19uzs9uC8U5T4VWHW81aUzdc206JnjXspb0qjGggZfUNJzVGoSpwFBdVx0jRlMDeVlRmr48QJ-3uuuxW4HR4PJig1wHu1Jhkl5Z-e-Psws59w9StCRnzLPAx62Aj8nKqG0CvdDeOdBJ0qqkhG5ARzuX4H-OEJNc2aghp-HAj1EyVjJKeUNEhn7aQnVONAbon2ehRG5alZtW5a7VDP_w9_zP4KcaX6w3rKUfg8tx_l_rN67MrX0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232114806</pqid></control><display><type>article</type><title>Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1)</title><source>ACS Publications</source><creator>Dunham, Noah P ; Del Río Pantoja, José M ; Zhang, Bo ; Rajakovich, Lauren J ; Allen, Benjamin D ; Krebs, Carsten ; Boal, Amie K ; Bollinger, J. Martin</creator><creatorcontrib>Dunham, Noah P ; Del Río Pantoja, José M ; Zhang, Bo ; Rajakovich, Lauren J ; Allen, Benjamin D ; Krebs, Carsten ; Boal, Amie K ; Bollinger, J. Martin ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Hydrogen-atom transfer (HAT) from a substrate carbon to an iron­(IV)-oxo (ferryl) intermediate initiates a diverse array of enzymatic transformations. For outcomes other than hydroxylation, coupling of the resultant carbon radical and hydroxo ligand (oxygen rebound) must generally be averted. A recent study of FtmOx1, a fungal iron­(II)- and 2-(oxo)­glutarate-dependent oxygenase that installs the endoperoxide of verruculogen by adding O2 between carbons 21 and 27 of fumitremorgin B, posited that tyrosine (Tyr or Y) 224 serves as HAT intermediary to separate the C21 radical (C21•) and Fe­(III)–OH HAT products and prevent rebound. Our reinvestigation of the FtmOx1 mechanism revealed, instead, direct HAT from C21 to the ferryl complex and surprisingly competitive rebound. The C21-hydroxylated (rebound) product, which undergoes deprenylation, predominates when low [O2] slows C21•–O2 coupling in the next step of the endoperoxidation pathway. This pathway culminates with addition of the C21–O–O• peroxyl adduct to olefinic C27 followed by HAT to the C26• from a Tyr. The last step results in sequential accumulation of Tyr radicals, which are suppressed without detriment to turnover by inclusion of the reductant, ascorbate. Replacement of each of four candidates for the proximal C26 H• donor (including Y224) with phenylalanine (F) revealed that only the Y68F variant (i) fails to accumulate the first Tyr• and (ii) makes an altered major product, identifying Y68 as the donor. The implied proximities of C21 to the iron cofactor and C26 to Y68 support a new docking model of the enzyme–substrate complex that is consistent with all available data.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b03567</identifier><identifier>PMID: 31117657</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystal structure ; Electron paramagnetic resonance spectroscopy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Oxygen ; Peptides and proteins ; Surface interactions</subject><ispartof>Journal of the American Chemical Society, 2019-06, Vol.141 (25), p.9964-9979</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-cab49c08d7f4cdb264b9290fa8dece431d8427ce6d5ed1c75b20dc1de28163df3</citedby><cites>FETCH-LOGICAL-a444t-cab49c08d7f4cdb264b9290fa8dece431d8427ce6d5ed1c75b20dc1de28163df3</cites><orcidid>0000-0003-0212-8879 ; 0000-0001-8006-9566 ; 0000-0001-5412-1981 ; 0000-0002-1234-8472 ; 0000-0002-3302-7053 ; 0000-0003-0751-8585 ; 0000-0002-7989-171X ; 0000-0001-6914-5572 ; 0000000154121981 ; 0000000169145572 ; 0000000233027053 ; 0000000180069566 ; 0000000302128879 ; 0000000212348472 ; 000000027989171X ; 0000000307518585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b03567$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b03567$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31117657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1531014$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunham, Noah P</creatorcontrib><creatorcontrib>Del Río Pantoja, José M</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Rajakovich, Lauren J</creatorcontrib><creatorcontrib>Allen, Benjamin D</creatorcontrib><creatorcontrib>Krebs, Carsten</creatorcontrib><creatorcontrib>Boal, Amie K</creatorcontrib><creatorcontrib>Bollinger, J. Martin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1)</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Hydrogen-atom transfer (HAT) from a substrate carbon to an iron­(IV)-oxo (ferryl) intermediate initiates a diverse array of enzymatic transformations. For outcomes other than hydroxylation, coupling of the resultant carbon radical and hydroxo ligand (oxygen rebound) must generally be averted. A recent study of FtmOx1, a fungal iron­(II)- and 2-(oxo)­glutarate-dependent oxygenase that installs the endoperoxide of verruculogen by adding O2 between carbons 21 and 27 of fumitremorgin B, posited that tyrosine (Tyr or Y) 224 serves as HAT intermediary to separate the C21 radical (C21•) and Fe­(III)–OH HAT products and prevent rebound. Our reinvestigation of the FtmOx1 mechanism revealed, instead, direct HAT from C21 to the ferryl complex and surprisingly competitive rebound. The C21-hydroxylated (rebound) product, which undergoes deprenylation, predominates when low [O2] slows C21•–O2 coupling in the next step of the endoperoxidation pathway. This pathway culminates with addition of the C21–O–O• peroxyl adduct to olefinic C27 followed by HAT to the C26• from a Tyr. The last step results in sequential accumulation of Tyr radicals, which are suppressed without detriment to turnover by inclusion of the reductant, ascorbate. Replacement of each of four candidates for the proximal C26 H• donor (including Y224) with phenylalanine (F) revealed that only the Y68F variant (i) fails to accumulate the first Tyr• and (ii) makes an altered major product, identifying Y68 as the donor. The implied proximities of C21 to the iron cofactor and C26 to Y68 support a new docking model of the enzyme–substrate complex that is consistent with all available data.</description><subject>Crystal structure</subject><subject>Electron paramagnetic resonance spectroscopy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Oxygen</subject><subject>Peptides and proteins</subject><subject>Surface interactions</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptUU1rHCEYltLQbJPeei7SUwKdRB3HmbkUQj6aQCCHpoWexNF3dl1mdatOyEB_fN3uJmmhJ1Gfj_d9HoTeU3JCCaOnS6XjSduRshL1KzSjFSNFRZl4jWaEEFbUjSj30dsYl_nKWUPfoP2SUlqLqp6hX9eTCX4ODl94p5L1Dndjws4nfNbFFJTevk1Y4fsp-Ggd4KMfojnGZgzWzfGlM34NwT9aA_jGxaSGQT2RvkMIox6HPw5fJ5cWKmb-VVrdPdLjQ7TXqyHCu915gL5dXd6fXxe3d19uzs9uC8U5T4VWHW81aUzdc206JnjXspb0qjGggZfUNJzVGoSpwFBdVx0jRlMDeVlRmr48QJ-3uuuxW4HR4PJig1wHu1Jhkl5Z-e-Psws59w9StCRnzLPAx62Aj8nKqG0CvdDeOdBJ0qqkhG5ARzuX4H-OEJNc2aghp-HAj1EyVjJKeUNEhn7aQnVONAbon2ehRG5alZtW5a7VDP_w9_zP4KcaX6w3rKUfg8tx_l_rN67MrX0</recordid><startdate>20190626</startdate><enddate>20190626</enddate><creator>Dunham, Noah P</creator><creator>Del Río Pantoja, José M</creator><creator>Zhang, Bo</creator><creator>Rajakovich, Lauren J</creator><creator>Allen, Benjamin D</creator><creator>Krebs, Carsten</creator><creator>Boal, Amie K</creator><creator>Bollinger, J. Martin</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0212-8879</orcidid><orcidid>https://orcid.org/0000-0001-8006-9566</orcidid><orcidid>https://orcid.org/0000-0001-5412-1981</orcidid><orcidid>https://orcid.org/0000-0002-1234-8472</orcidid><orcidid>https://orcid.org/0000-0002-3302-7053</orcidid><orcidid>https://orcid.org/0000-0003-0751-8585</orcidid><orcidid>https://orcid.org/0000-0002-7989-171X</orcidid><orcidid>https://orcid.org/0000-0001-6914-5572</orcidid><orcidid>https://orcid.org/0000000154121981</orcidid><orcidid>https://orcid.org/0000000169145572</orcidid><orcidid>https://orcid.org/0000000233027053</orcidid><orcidid>https://orcid.org/0000000180069566</orcidid><orcidid>https://orcid.org/0000000302128879</orcidid><orcidid>https://orcid.org/0000000212348472</orcidid><orcidid>https://orcid.org/000000027989171X</orcidid><orcidid>https://orcid.org/0000000307518585</orcidid></search><sort><creationdate>20190626</creationdate><title>Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1)</title><author>Dunham, Noah P ; Del Río Pantoja, José M ; Zhang, Bo ; Rajakovich, Lauren J ; Allen, Benjamin D ; Krebs, Carsten ; Boal, Amie K ; Bollinger, J. Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-cab49c08d7f4cdb264b9290fa8dece431d8427ce6d5ed1c75b20dc1de28163df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crystal structure</topic><topic>Electron paramagnetic resonance spectroscopy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Oxygen</topic><topic>Peptides and proteins</topic><topic>Surface interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunham, Noah P</creatorcontrib><creatorcontrib>Del Río Pantoja, José M</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Rajakovich, Lauren J</creatorcontrib><creatorcontrib>Allen, Benjamin D</creatorcontrib><creatorcontrib>Krebs, Carsten</creatorcontrib><creatorcontrib>Boal, Amie K</creatorcontrib><creatorcontrib>Bollinger, J. Martin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunham, Noah P</au><au>Del Río Pantoja, José M</au><au>Zhang, Bo</au><au>Rajakovich, Lauren J</au><au>Allen, Benjamin D</au><au>Krebs, Carsten</au><au>Boal, Amie K</au><au>Bollinger, J. Martin</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1)</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-06-26</date><risdate>2019</risdate><volume>141</volume><issue>25</issue><spage>9964</spage><epage>9979</epage><pages>9964-9979</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Hydrogen-atom transfer (HAT) from a substrate carbon to an iron­(IV)-oxo (ferryl) intermediate initiates a diverse array of enzymatic transformations. For outcomes other than hydroxylation, coupling of the resultant carbon radical and hydroxo ligand (oxygen rebound) must generally be averted. A recent study of FtmOx1, a fungal iron­(II)- and 2-(oxo)­glutarate-dependent oxygenase that installs the endoperoxide of verruculogen by adding O2 between carbons 21 and 27 of fumitremorgin B, posited that tyrosine (Tyr or Y) 224 serves as HAT intermediary to separate the C21 radical (C21•) and Fe­(III)–OH HAT products and prevent rebound. Our reinvestigation of the FtmOx1 mechanism revealed, instead, direct HAT from C21 to the ferryl complex and surprisingly competitive rebound. The C21-hydroxylated (rebound) product, which undergoes deprenylation, predominates when low [O2] slows C21•–O2 coupling in the next step of the endoperoxidation pathway. This pathway culminates with addition of the C21–O–O• peroxyl adduct to olefinic C27 followed by HAT to the C26• from a Tyr. The last step results in sequential accumulation of Tyr radicals, which are suppressed without detriment to turnover by inclusion of the reductant, ascorbate. Replacement of each of four candidates for the proximal C26 H• donor (including Y224) with phenylalanine (F) revealed that only the Y68F variant (i) fails to accumulate the first Tyr• and (ii) makes an altered major product, identifying Y68 as the donor. The implied proximities of C21 to the iron cofactor and C26 to Y68 support a new docking model of the enzyme–substrate complex that is consistent with all available data.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31117657</pmid><doi>10.1021/jacs.9b03567</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0212-8879</orcidid><orcidid>https://orcid.org/0000-0001-8006-9566</orcidid><orcidid>https://orcid.org/0000-0001-5412-1981</orcidid><orcidid>https://orcid.org/0000-0002-1234-8472</orcidid><orcidid>https://orcid.org/0000-0002-3302-7053</orcidid><orcidid>https://orcid.org/0000-0003-0751-8585</orcidid><orcidid>https://orcid.org/0000-0002-7989-171X</orcidid><orcidid>https://orcid.org/0000-0001-6914-5572</orcidid><orcidid>https://orcid.org/0000000154121981</orcidid><orcidid>https://orcid.org/0000000169145572</orcidid><orcidid>https://orcid.org/0000000233027053</orcidid><orcidid>https://orcid.org/0000000180069566</orcidid><orcidid>https://orcid.org/0000000302128879</orcidid><orcidid>https://orcid.org/0000000212348472</orcidid><orcidid>https://orcid.org/000000027989171X</orcidid><orcidid>https://orcid.org/0000000307518585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-06, Vol.141 (25), p.9964-9979
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6901024
source ACS Publications
subjects Crystal structure
Electron paramagnetic resonance spectroscopy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Oxygen
Peptides and proteins
Surface interactions
title Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T23%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Donation%20but%20not%20Abstraction%20by%20a%20Tyrosine%20(Y68)%20during%20Endoperoxide%20Installation%20by%20Verruculogen%20Synthase%20(FtmOx1)&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Dunham,%20Noah%20P&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-06-26&rft.volume=141&rft.issue=25&rft.spage=9964&rft.epage=9979&rft.pages=9964-9979&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b03567&rft_dat=%3Cproquest_pubme%3E2232114806%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232114806&rft_id=info:pmid/31117657&rfr_iscdi=true