Linked-read analysis identifies mutations in single-cell DNA-sequencing data

Whole-genome sequencing of DNA from single cells has the potential to reshape our understanding of mutational heterogeneity in normal and diseased tissues. However, a major difficulty is distinguishing amplification artifacts from biologically derived somatic mutations. Here, we describe linked-read...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2019-04, Vol.51 (4), p.749-754
Hauptverfasser: Bohrson, Craig L., Barton, Alison R., Lodato, Michael A., Rodin, Rachel E., Luquette, Lovelace J., Viswanadham, Vinay V., Gulhan, Doga C., Cortés-Ciriano, Isidro, Sherman, Maxwell A., Kwon, Minseok, Coulter, Michael E., Galor, Alon, Walsh, Christopher A., Park, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 4
container_start_page 749
container_title Nature genetics
container_volume 51
creator Bohrson, Craig L.
Barton, Alison R.
Lodato, Michael A.
Rodin, Rachel E.
Luquette, Lovelace J.
Viswanadham, Vinay V.
Gulhan, Doga C.
Cortés-Ciriano, Isidro
Sherman, Maxwell A.
Kwon, Minseok
Coulter, Michael E.
Galor, Alon
Walsh, Christopher A.
Park, Peter J.
description Whole-genome sequencing of DNA from single cells has the potential to reshape our understanding of mutational heterogeneity in normal and diseased tissues. However, a major difficulty is distinguishing amplification artifacts from biologically derived somatic mutations. Here, we describe linked-read analysis (LiRA), a method that accurately identifies somatic single-nucleotide variants (sSNVs) by using read-level phasing with nearby germline heterozygous polymorphisms, thereby enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells. Linked-read analysis is a method for analyzing single-cell DNA-sequencing data that accurately identifies somatic single-nucleotide variants by using read-level phasing with nearby germline variants, enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells.
doi_str_mv 10.1038/s41588-019-0366-2
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580621025</galeid><sourcerecordid>A580621025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-aa011861229af0b1fd5acad1ec24dbe4496fd7c5693ef3daf7a024bee35550323</originalsourceid><addsrcrecordid>eNqNkltv1DAQhS0EomXhB_CCIvECD4bxJU7ygrQqt0orKnF7tWbjcXDJOm2cIPrvcbSlZZGQeLI18_mM5-gw9ljACwGqfpm0KOuag2g4KGO4vMOORakNF5Wo7-Y7GMF1bh2xBymdAwitob7PjhTUtdFSH7PNJsTv5PhI6AqM2F-lkIrgKE7BB0rFbp5wCkPMxVikELueeEt9X7z-sOaJLmeKba4WDid8yO557BM9uj5X7MvbN59P3vPN2bvTk_WGt6UxE0cEIWojpGzQw1Z4V2KLTlArtduS1o3xrspso8grh75CkHpLpMqyBCXVir3a617M2x25Nn92xN5ejGGH45UdMNjDTgzfbDf8sKYBaJTKAs-uBcYhb5Amuwtp2QojDXOyUjRaKF1l71bs6V_o-TCP2ahMSTAARlXNLdVhTzZEP-S57SJq12UNRgqQZaaeH1DtECf6OXU4p2RPP338f_bs6yEr9mw7DimN5G-sEGCXpNh9UmxOil2SYhcPn_zp4c2L39HIgNwDKbdiR-Pt4v9W_QV8Uca3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206006379</pqid></control><display><type>article</type><title>Linked-read analysis identifies mutations in single-cell DNA-sequencing data</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Bohrson, Craig L. ; Barton, Alison R. ; Lodato, Michael A. ; Rodin, Rachel E. ; Luquette, Lovelace J. ; Viswanadham, Vinay V. ; Gulhan, Doga C. ; Cortés-Ciriano, Isidro ; Sherman, Maxwell A. ; Kwon, Minseok ; Coulter, Michael E. ; Galor, Alon ; Walsh, Christopher A. ; Park, Peter J.</creator><creatorcontrib>Bohrson, Craig L. ; Barton, Alison R. ; Lodato, Michael A. ; Rodin, Rachel E. ; Luquette, Lovelace J. ; Viswanadham, Vinay V. ; Gulhan, Doga C. ; Cortés-Ciriano, Isidro ; Sherman, Maxwell A. ; Kwon, Minseok ; Coulter, Michael E. ; Galor, Alon ; Walsh, Christopher A. ; Park, Peter J.</creatorcontrib><description>Whole-genome sequencing of DNA from single cells has the potential to reshape our understanding of mutational heterogeneity in normal and diseased tissues. However, a major difficulty is distinguishing amplification artifacts from biologically derived somatic mutations. Here, we describe linked-read analysis (LiRA), a method that accurately identifies somatic single-nucleotide variants (sSNVs) by using read-level phasing with nearby germline heterozygous polymorphisms, thereby enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells. Linked-read analysis is a method for analyzing single-cell DNA-sequencing data that accurately identifies somatic single-nucleotide variants by using read-level phasing with nearby germline variants, enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-019-0366-2</identifier><identifier>PMID: 30886424</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45/23 ; 631/1647/48 ; 631/1647/514/1948 ; Agriculture ; Animal Genetics and Genomics ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Bladder cancer ; Cancer Research ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Mutational Analysis - methods ; DNA sequencing ; Gene Function ; Gene mutation ; Genetic research ; Genomes ; Genomics ; Haplotypes ; Heterogeneity ; Heterozygote ; Human Genetics ; Humans ; Methods ; Mutation ; Mutation - genetics ; Mutation Rate ; Mutation rates ; Polymorphism, Single Nucleotide - genetics ; Sequence Analysis, DNA - methods ; Single-Cell Analysis - methods ; technical-report ; Whole Genome Sequencing - methods</subject><ispartof>Nature genetics, 2019-04, Vol.51 (4), p.749-754</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-aa011861229af0b1fd5acad1ec24dbe4496fd7c5693ef3daf7a024bee35550323</citedby><cites>FETCH-LOGICAL-c566t-aa011861229af0b1fd5acad1ec24dbe4496fd7c5693ef3daf7a024bee35550323</cites><orcidid>0000-0002-2036-494X ; 0000-0002-0156-2238 ; 0000-0001-9378-960X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-019-0366-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-019-0366-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30886424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohrson, Craig L.</creatorcontrib><creatorcontrib>Barton, Alison R.</creatorcontrib><creatorcontrib>Lodato, Michael A.</creatorcontrib><creatorcontrib>Rodin, Rachel E.</creatorcontrib><creatorcontrib>Luquette, Lovelace J.</creatorcontrib><creatorcontrib>Viswanadham, Vinay V.</creatorcontrib><creatorcontrib>Gulhan, Doga C.</creatorcontrib><creatorcontrib>Cortés-Ciriano, Isidro</creatorcontrib><creatorcontrib>Sherman, Maxwell A.</creatorcontrib><creatorcontrib>Kwon, Minseok</creatorcontrib><creatorcontrib>Coulter, Michael E.</creatorcontrib><creatorcontrib>Galor, Alon</creatorcontrib><creatorcontrib>Walsh, Christopher A.</creatorcontrib><creatorcontrib>Park, Peter J.</creatorcontrib><title>Linked-read analysis identifies mutations in single-cell DNA-sequencing data</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Whole-genome sequencing of DNA from single cells has the potential to reshape our understanding of mutational heterogeneity in normal and diseased tissues. However, a major difficulty is distinguishing amplification artifacts from biologically derived somatic mutations. Here, we describe linked-read analysis (LiRA), a method that accurately identifies somatic single-nucleotide variants (sSNVs) by using read-level phasing with nearby germline heterozygous polymorphisms, thereby enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells. Linked-read analysis is a method for analyzing single-cell DNA-sequencing data that accurately identifies somatic single-nucleotide variants by using read-level phasing with nearby germline variants, enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells.</description><subject>45/23</subject><subject>631/1647/48</subject><subject>631/1647/514/1948</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bladder cancer</subject><subject>Cancer Research</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Mutational Analysis - methods</subject><subject>DNA sequencing</subject><subject>Gene Function</subject><subject>Gene mutation</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Heterogeneity</subject><subject>Heterozygote</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Methods</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Mutation Rate</subject><subject>Mutation rates</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Single-Cell Analysis - methods</subject><subject>technical-report</subject><subject>Whole Genome Sequencing - methods</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkltv1DAQhS0EomXhB_CCIvECD4bxJU7ygrQqt0orKnF7tWbjcXDJOm2cIPrvcbSlZZGQeLI18_mM5-gw9ljACwGqfpm0KOuag2g4KGO4vMOORakNF5Wo7-Y7GMF1bh2xBymdAwitob7PjhTUtdFSH7PNJsTv5PhI6AqM2F-lkIrgKE7BB0rFbp5wCkPMxVikELueeEt9X7z-sOaJLmeKba4WDid8yO557BM9uj5X7MvbN59P3vPN2bvTk_WGt6UxE0cEIWojpGzQw1Z4V2KLTlArtduS1o3xrspso8grh75CkHpLpMqyBCXVir3a617M2x25Nn92xN5ejGGH45UdMNjDTgzfbDf8sKYBaJTKAs-uBcYhb5Amuwtp2QojDXOyUjRaKF1l71bs6V_o-TCP2ahMSTAARlXNLdVhTzZEP-S57SJq12UNRgqQZaaeH1DtECf6OXU4p2RPP338f_bs6yEr9mw7DimN5G-sEGCXpNh9UmxOil2SYhcPn_zp4c2L39HIgNwDKbdiR-Pt4v9W_QV8Uca3</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Bohrson, Craig L.</creator><creator>Barton, Alison R.</creator><creator>Lodato, Michael A.</creator><creator>Rodin, Rachel E.</creator><creator>Luquette, Lovelace J.</creator><creator>Viswanadham, Vinay V.</creator><creator>Gulhan, Doga C.</creator><creator>Cortés-Ciriano, Isidro</creator><creator>Sherman, Maxwell A.</creator><creator>Kwon, Minseok</creator><creator>Coulter, Michael E.</creator><creator>Galor, Alon</creator><creator>Walsh, Christopher A.</creator><creator>Park, Peter J.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2036-494X</orcidid><orcidid>https://orcid.org/0000-0002-0156-2238</orcidid><orcidid>https://orcid.org/0000-0001-9378-960X</orcidid></search><sort><creationdate>20190401</creationdate><title>Linked-read analysis identifies mutations in single-cell DNA-sequencing data</title><author>Bohrson, Craig L. ; Barton, Alison R. ; Lodato, Michael A. ; Rodin, Rachel E. ; Luquette, Lovelace J. ; Viswanadham, Vinay V. ; Gulhan, Doga C. ; Cortés-Ciriano, Isidro ; Sherman, Maxwell A. ; Kwon, Minseok ; Coulter, Michael E. ; Galor, Alon ; Walsh, Christopher A. ; Park, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-aa011861229af0b1fd5acad1ec24dbe4496fd7c5693ef3daf7a024bee35550323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45/23</topic><topic>631/1647/48</topic><topic>631/1647/514/1948</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bladder cancer</topic><topic>Cancer Research</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Mutational Analysis - methods</topic><topic>DNA sequencing</topic><topic>Gene Function</topic><topic>Gene mutation</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Heterogeneity</topic><topic>Heterozygote</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Methods</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Mutation Rate</topic><topic>Mutation rates</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Single-Cell Analysis - methods</topic><topic>technical-report</topic><topic>Whole Genome Sequencing - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohrson, Craig L.</creatorcontrib><creatorcontrib>Barton, Alison R.</creatorcontrib><creatorcontrib>Lodato, Michael A.</creatorcontrib><creatorcontrib>Rodin, Rachel E.</creatorcontrib><creatorcontrib>Luquette, Lovelace J.</creatorcontrib><creatorcontrib>Viswanadham, Vinay V.</creatorcontrib><creatorcontrib>Gulhan, Doga C.</creatorcontrib><creatorcontrib>Cortés-Ciriano, Isidro</creatorcontrib><creatorcontrib>Sherman, Maxwell A.</creatorcontrib><creatorcontrib>Kwon, Minseok</creatorcontrib><creatorcontrib>Coulter, Michael E.</creatorcontrib><creatorcontrib>Galor, Alon</creatorcontrib><creatorcontrib>Walsh, Christopher A.</creatorcontrib><creatorcontrib>Park, Peter J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohrson, Craig L.</au><au>Barton, Alison R.</au><au>Lodato, Michael A.</au><au>Rodin, Rachel E.</au><au>Luquette, Lovelace J.</au><au>Viswanadham, Vinay V.</au><au>Gulhan, Doga C.</au><au>Cortés-Ciriano, Isidro</au><au>Sherman, Maxwell A.</au><au>Kwon, Minseok</au><au>Coulter, Michael E.</au><au>Galor, Alon</au><au>Walsh, Christopher A.</au><au>Park, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linked-read analysis identifies mutations in single-cell DNA-sequencing data</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>749</spage><epage>754</epage><pages>749-754</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Whole-genome sequencing of DNA from single cells has the potential to reshape our understanding of mutational heterogeneity in normal and diseased tissues. However, a major difficulty is distinguishing amplification artifacts from biologically derived somatic mutations. Here, we describe linked-read analysis (LiRA), a method that accurately identifies somatic single-nucleotide variants (sSNVs) by using read-level phasing with nearby germline heterozygous polymorphisms, thereby enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells. Linked-read analysis is a method for analyzing single-cell DNA-sequencing data that accurately identifies somatic single-nucleotide variants by using read-level phasing with nearby germline variants, enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30886424</pmid><doi>10.1038/s41588-019-0366-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2036-494X</orcidid><orcidid>https://orcid.org/0000-0002-0156-2238</orcidid><orcidid>https://orcid.org/0000-0001-9378-960X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2019-04, Vol.51 (4), p.749-754
issn 1061-4036
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900933
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 45/23
631/1647/48
631/1647/514/1948
Agriculture
Animal Genetics and Genomics
Biochemistry
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Bladder cancer
Cancer Research
Chromosomes
Deoxyribonucleic acid
DNA
DNA damage
DNA Mutational Analysis - methods
DNA sequencing
Gene Function
Gene mutation
Genetic research
Genomes
Genomics
Haplotypes
Heterogeneity
Heterozygote
Human Genetics
Humans
Methods
Mutation
Mutation - genetics
Mutation Rate
Mutation rates
Polymorphism, Single Nucleotide - genetics
Sequence Analysis, DNA - methods
Single-Cell Analysis - methods
technical-report
Whole Genome Sequencing - methods
title Linked-read analysis identifies mutations in single-cell DNA-sequencing data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linked-read%20analysis%20identifies%20mutations%20in%20single-cell%20DNA-sequencing%20data&rft.jtitle=Nature%20genetics&rft.au=Bohrson,%20Craig%20L.&rft.date=2019-04-01&rft.volume=51&rft.issue=4&rft.spage=749&rft.epage=754&rft.pages=749-754&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-019-0366-2&rft_dat=%3Cgale_pubme%3EA580621025%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206006379&rft_id=info:pmid/30886424&rft_galeid=A580621025&rfr_iscdi=true