Magnetic handshake materials as a scale-invariant platform for programmed self-assembly

Programmable self-assembly of smart, digital, and structurally complex materials from simple components at size scales from the macro to the nano remains a long-standing goal of material science. Here, we introduce a platform based on magnetic encoding of information to drive programmable self-assem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-12, Vol.116 (49), p.24402-24407
Hauptverfasser: Niu, Ran, Du, Chrisy Xiyu, Esposito, Edward, Ng, Jakin, Brenner, Michael P., McEuen, Paul L., Cohen, Itai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24407
container_issue 49
container_start_page 24402
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Niu, Ran
Du, Chrisy Xiyu
Esposito, Edward
Ng, Jakin
Brenner, Michael P.
McEuen, Paul L.
Cohen, Itai
description Programmable self-assembly of smart, digital, and structurally complex materials from simple components at size scales from the macro to the nano remains a long-standing goal of material science. Here, we introduce a platform based on magnetic encoding of information to drive programmable self-assembly that works across length scales. Our building blocks consist of panels with different patterns of magnetic dipoles that are capable of specific binding. Because the ratios of the different panel-binding energies are scale-invariant, this approach can, in principle, be applied down to the nanometer scale. Using a centimeter-sized version of these panels, we demonstrate 3 canonical hallmarks of assembly: controlled polymerization of individual building blocks; assembly of 1-dimensional strands made of panels connected by elastic backbones into secondary structures; and hierarchical assembly of 2-dimensional nets into 3-dimensional objects. We envision that magnetic encoding of assembly instructions into primary structures of panels, strands, and nets will lead to the formation of secondary and even tertiary structures that transmit information, act as mechanical elements, or function as machines on scales ranging from the nano to the macro.
doi_str_mv 10.1073/pnas.1910332116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26861630</jstor_id><sourcerecordid>26861630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-84aafa416856cfab6390301b17d558ad51dc8005414876251a24fe8468c3d8f93</originalsourceid><addsrcrecordid>eNpdkcuLFDEQxoMo7uzq2ZPS4GUvvVvVeXRyEWTxBSteFI-hJp2e6bE7aZOehf3vzTDr-ICQQOpXH1_Vx9gLhCuEll_PgfIVGgTOG0T1iK0QDNZKGHjMVgBNW2vRiDN2nvMOAIzU8JSdcWylAK5X7Ptn2gS_DK7aUujyln74aqLFp4HGXFE5VXY0-noId1Q-w1LNIy19TFNVrmpOcZNomnxXZT_2NeXsp_V4_4w96YuCf_7wXrBv7999vflY33758Onm7W3thOBLMUfUk0ClpXI9rRU3wAHX2HZSauokdk4DSIFCt6qRSI3ovRZKO97p3vAL9uaoO-_XxYTzYUk02jkNE6V7G2mw_1bCsLWbeGeVKbIoisDlg0CKP_c-L3YasvPjSMHHfbbNYVdGc4EFff0fuov7FMp4hWrK_rWRslDXR8qlmHPy_ckMgj2EZg-h2T-hlY5Xf89w4n-nVICXR2CXl5hO9UZpVdqB_wLAHJ0U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322118955</pqid></control><display><type>article</type><title>Magnetic handshake materials as a scale-invariant platform for programmed self-assembly</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Niu, Ran ; Du, Chrisy Xiyu ; Esposito, Edward ; Ng, Jakin ; Brenner, Michael P. ; McEuen, Paul L. ; Cohen, Itai</creator><creatorcontrib>Niu, Ran ; Du, Chrisy Xiyu ; Esposito, Edward ; Ng, Jakin ; Brenner, Michael P. ; McEuen, Paul L. ; Cohen, Itai</creatorcontrib><description>Programmable self-assembly of smart, digital, and structurally complex materials from simple components at size scales from the macro to the nano remains a long-standing goal of material science. Here, we introduce a platform based on magnetic encoding of information to drive programmable self-assembly that works across length scales. Our building blocks consist of panels with different patterns of magnetic dipoles that are capable of specific binding. Because the ratios of the different panel-binding energies are scale-invariant, this approach can, in principle, be applied down to the nanometer scale. Using a centimeter-sized version of these panels, we demonstrate 3 canonical hallmarks of assembly: controlled polymerization of individual building blocks; assembly of 1-dimensional strands made of panels connected by elastic backbones into secondary structures; and hierarchical assembly of 2-dimensional nets into 3-dimensional objects. We envision that magnetic encoding of assembly instructions into primary structures of panels, strands, and nets will lead to the formation of secondary and even tertiary structures that transmit information, act as mechanical elements, or function as machines on scales ranging from the nano to the macro.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1910332116</identifier><identifier>PMID: 31754038</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Invariants ; Magnetic dipoles ; Mechanical properties ; Nets ; Panels ; Physical Sciences ; Polymerization ; Self-assembly ; Strands ; Structural hierarchy</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (49), p.24402-24407</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 3, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-84aafa416856cfab6390301b17d558ad51dc8005414876251a24fe8468c3d8f93</citedby><cites>FETCH-LOGICAL-c443t-84aafa416856cfab6390301b17d558ad51dc8005414876251a24fe8468c3d8f93</cites><orcidid>0000-0002-6438-5750 ; 0000-0001-7791-3914 ; 0000-0002-1881-7102 ; 0000-0002-5673-7947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26861630$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26861630$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31754038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Ran</creatorcontrib><creatorcontrib>Du, Chrisy Xiyu</creatorcontrib><creatorcontrib>Esposito, Edward</creatorcontrib><creatorcontrib>Ng, Jakin</creatorcontrib><creatorcontrib>Brenner, Michael P.</creatorcontrib><creatorcontrib>McEuen, Paul L.</creatorcontrib><creatorcontrib>Cohen, Itai</creatorcontrib><title>Magnetic handshake materials as a scale-invariant platform for programmed self-assembly</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Programmable self-assembly of smart, digital, and structurally complex materials from simple components at size scales from the macro to the nano remains a long-standing goal of material science. Here, we introduce a platform based on magnetic encoding of information to drive programmable self-assembly that works across length scales. Our building blocks consist of panels with different patterns of magnetic dipoles that are capable of specific binding. Because the ratios of the different panel-binding energies are scale-invariant, this approach can, in principle, be applied down to the nanometer scale. Using a centimeter-sized version of these panels, we demonstrate 3 canonical hallmarks of assembly: controlled polymerization of individual building blocks; assembly of 1-dimensional strands made of panels connected by elastic backbones into secondary structures; and hierarchical assembly of 2-dimensional nets into 3-dimensional objects. We envision that magnetic encoding of assembly instructions into primary structures of panels, strands, and nets will lead to the formation of secondary and even tertiary structures that transmit information, act as mechanical elements, or function as machines on scales ranging from the nano to the macro.</description><subject>Invariants</subject><subject>Magnetic dipoles</subject><subject>Mechanical properties</subject><subject>Nets</subject><subject>Panels</subject><subject>Physical Sciences</subject><subject>Polymerization</subject><subject>Self-assembly</subject><subject>Strands</subject><subject>Structural hierarchy</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkcuLFDEQxoMo7uzq2ZPS4GUvvVvVeXRyEWTxBSteFI-hJp2e6bE7aZOehf3vzTDr-ICQQOpXH1_Vx9gLhCuEll_PgfIVGgTOG0T1iK0QDNZKGHjMVgBNW2vRiDN2nvMOAIzU8JSdcWylAK5X7Ptn2gS_DK7aUujyln74aqLFp4HGXFE5VXY0-noId1Q-w1LNIy19TFNVrmpOcZNomnxXZT_2NeXsp_V4_4w96YuCf_7wXrBv7999vflY33758Onm7W3thOBLMUfUk0ClpXI9rRU3wAHX2HZSauokdk4DSIFCt6qRSI3ovRZKO97p3vAL9uaoO-_XxYTzYUk02jkNE6V7G2mw_1bCsLWbeGeVKbIoisDlg0CKP_c-L3YasvPjSMHHfbbNYVdGc4EFff0fuov7FMp4hWrK_rWRslDXR8qlmHPy_ckMgj2EZg-h2T-hlY5Xf89w4n-nVICXR2CXl5hO9UZpVdqB_wLAHJ0U</recordid><startdate>20191203</startdate><enddate>20191203</enddate><creator>Niu, Ran</creator><creator>Du, Chrisy Xiyu</creator><creator>Esposito, Edward</creator><creator>Ng, Jakin</creator><creator>Brenner, Michael P.</creator><creator>McEuen, Paul L.</creator><creator>Cohen, Itai</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6438-5750</orcidid><orcidid>https://orcid.org/0000-0001-7791-3914</orcidid><orcidid>https://orcid.org/0000-0002-1881-7102</orcidid><orcidid>https://orcid.org/0000-0002-5673-7947</orcidid></search><sort><creationdate>20191203</creationdate><title>Magnetic handshake materials as a scale-invariant platform for programmed self-assembly</title><author>Niu, Ran ; Du, Chrisy Xiyu ; Esposito, Edward ; Ng, Jakin ; Brenner, Michael P. ; McEuen, Paul L. ; Cohen, Itai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-84aafa416856cfab6390301b17d558ad51dc8005414876251a24fe8468c3d8f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Invariants</topic><topic>Magnetic dipoles</topic><topic>Mechanical properties</topic><topic>Nets</topic><topic>Panels</topic><topic>Physical Sciences</topic><topic>Polymerization</topic><topic>Self-assembly</topic><topic>Strands</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Ran</creatorcontrib><creatorcontrib>Du, Chrisy Xiyu</creatorcontrib><creatorcontrib>Esposito, Edward</creatorcontrib><creatorcontrib>Ng, Jakin</creatorcontrib><creatorcontrib>Brenner, Michael P.</creatorcontrib><creatorcontrib>McEuen, Paul L.</creatorcontrib><creatorcontrib>Cohen, Itai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Ran</au><au>Du, Chrisy Xiyu</au><au>Esposito, Edward</au><au>Ng, Jakin</au><au>Brenner, Michael P.</au><au>McEuen, Paul L.</au><au>Cohen, Itai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic handshake materials as a scale-invariant platform for programmed self-assembly</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-12-03</date><risdate>2019</risdate><volume>116</volume><issue>49</issue><spage>24402</spage><epage>24407</epage><pages>24402-24407</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Programmable self-assembly of smart, digital, and structurally complex materials from simple components at size scales from the macro to the nano remains a long-standing goal of material science. Here, we introduce a platform based on magnetic encoding of information to drive programmable self-assembly that works across length scales. Our building blocks consist of panels with different patterns of magnetic dipoles that are capable of specific binding. Because the ratios of the different panel-binding energies are scale-invariant, this approach can, in principle, be applied down to the nanometer scale. Using a centimeter-sized version of these panels, we demonstrate 3 canonical hallmarks of assembly: controlled polymerization of individual building blocks; assembly of 1-dimensional strands made of panels connected by elastic backbones into secondary structures; and hierarchical assembly of 2-dimensional nets into 3-dimensional objects. We envision that magnetic encoding of assembly instructions into primary structures of panels, strands, and nets will lead to the formation of secondary and even tertiary structures that transmit information, act as mechanical elements, or function as machines on scales ranging from the nano to the macro.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31754038</pmid><doi>10.1073/pnas.1910332116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6438-5750</orcidid><orcidid>https://orcid.org/0000-0001-7791-3914</orcidid><orcidid>https://orcid.org/0000-0002-1881-7102</orcidid><orcidid>https://orcid.org/0000-0002-5673-7947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (49), p.24402-24407
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900514
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Invariants
Magnetic dipoles
Mechanical properties
Nets
Panels
Physical Sciences
Polymerization
Self-assembly
Strands
Structural hierarchy
title Magnetic handshake materials as a scale-invariant platform for programmed self-assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20handshake%20materials%20as%20a%20scale-invariant%20platform%20for%20programmed%20self-assembly&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Niu,%20Ran&rft.date=2019-12-03&rft.volume=116&rft.issue=49&rft.spage=24402&rft.epage=24407&rft.pages=24402-24407&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1910332116&rft_dat=%3Cjstor_pubme%3E26861630%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322118955&rft_id=info:pmid/31754038&rft_jstor_id=26861630&rfr_iscdi=true