miR‐29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy‐related genes

Aim To identify microRNAs (miRs) involved in the regulation of skeletal muscle mass. For that purpose, we have initially utilized an in silico analysis, resulting in the identification of miR‐29c as a positive regulator of muscle mass. Methods miR‐29c was electrotransferred to the tibialis anterior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Physiologica 2019-08, Vol.226 (4), p.e13278-n/a
Hauptverfasser: Silva, William José, Graça, Flavia Aparecida, Cruz, André, Silvestre, João Guilherme, Labeit, Siegfried, Miyabara, Elen Haruka, Yan, Chao Yun Irene, Wang, Da Zhi, Moriscot, Anselmo Sigari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e13278
container_title Acta Physiologica
container_volume 226
creator Silva, William José
Graça, Flavia Aparecida
Cruz, André
Silvestre, João Guilherme
Labeit, Siegfried
Miyabara, Elen Haruka
Yan, Chao Yun Irene
Wang, Da Zhi
Moriscot, Anselmo Sigari
description Aim To identify microRNAs (miRs) involved in the regulation of skeletal muscle mass. For that purpose, we have initially utilized an in silico analysis, resulting in the identification of miR‐29c as a positive regulator of muscle mass. Methods miR‐29c was electrotransferred to the tibialis anterior to address its morphometric and functional properties and to determine the level of satellite cell proliferation and differentiation. qPCR was used to investigate the effect of miR‐29c overexpression on trophicity‐related genes. C2C12 cells were used to determine the impact of miR‐29c on myogenesis and a luciferase reporter assay was used to evaluate the ability of miR‐29c to bind to the MuRF1 3′UTR. Results The overexpression of miR‐29c in the tibialis anterior increased muscle mass by 40%, with a corresponding increase in fibre cross‐sectional area and force and a 30% increase in length. In addition, satellite cell proliferation and differentiation were increased. In C2C12 cells, miR‐29c oligonucleotides caused increased levels of differentiation, as evidenced by an increase in eMHC immunostaining and the myotube fusion index. Accordingly, the mRNA levels of myogenic markers were also increased. Mechanistically, the overexpression of miR‐29c inhibited the expression of the muscle atrophic factors MuRF1, Atrogin‐1 and HDAC4. For the key atrogene MuRF1, we found that miR‐29c can bind to its 3′UTR to mediate repression. Conclusions The results herein suggest that miR‐29c can improve skeletal muscle size and function by stimulating satellite cell proliferation and repressing atrophy‐related genes. Taken together, our results indicate that miR‐29c might be useful as a future therapeutic device in diseases involving decreased skeletal muscle mass.
doi_str_mv 10.1111/apha.13278
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256486503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4488-d7626c32b4486a609a3e4ea2bc0bebcf4966922928fc9428d614802ca52094613</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EolXphgdAltggpCn-iyfZII0qoEiVQAjWluPcTFwcO9hOq-x4BCTekCfB0ynDzwJv7Gt_Pj7XB6HHlJzRMl7oadBnlLN1fQ8d07WoV3RN5f3DmtRH6DSlK0IIZZQLxh6iI04awTmtjtH30X748fUbawy24xTDNSScPoODrB0e52Qc4FGnhLXvcD97k23wOA8xzNshzBmPSzBLBlzuOttD1LfAju5sX2rw2f7eaxccYYqQkvVbrHMM07CU9yM4naHDW_CQHqEHvXYJTu_mE_Tp9auP5xery3dv3p5vLldGiLpedWvJpOGsLZXUkjSagwDNWkNaaE0vGikbxhpW96YRrO4kFTVhRlestC8pP0Ev97rT3I7QmWI1aqemaEcdFxW0VX-feDuobbhWsimfSasi8OxOIIYvM6SsRpsMOKc9hDkpxgingjKyQ5_-g16FOfrSXqEqWTqoCC_U8z1lYkgpQn8wQ4naxa12cavbuAv85E_7B_RXuAWge-DGOlj-I6U27y82e9GfzsO6Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256486503</pqid></control><display><type>article</type><title>miR‐29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy‐related genes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Silva, William José ; Graça, Flavia Aparecida ; Cruz, André ; Silvestre, João Guilherme ; Labeit, Siegfried ; Miyabara, Elen Haruka ; Yan, Chao Yun Irene ; Wang, Da Zhi ; Moriscot, Anselmo Sigari</creator><creatorcontrib>Silva, William José ; Graça, Flavia Aparecida ; Cruz, André ; Silvestre, João Guilherme ; Labeit, Siegfried ; Miyabara, Elen Haruka ; Yan, Chao Yun Irene ; Wang, Da Zhi ; Moriscot, Anselmo Sigari</creatorcontrib><description>Aim To identify microRNAs (miRs) involved in the regulation of skeletal muscle mass. For that purpose, we have initially utilized an in silico analysis, resulting in the identification of miR‐29c as a positive regulator of muscle mass. Methods miR‐29c was electrotransferred to the tibialis anterior to address its morphometric and functional properties and to determine the level of satellite cell proliferation and differentiation. qPCR was used to investigate the effect of miR‐29c overexpression on trophicity‐related genes. C2C12 cells were used to determine the impact of miR‐29c on myogenesis and a luciferase reporter assay was used to evaluate the ability of miR‐29c to bind to the MuRF1 3′UTR. Results The overexpression of miR‐29c in the tibialis anterior increased muscle mass by 40%, with a corresponding increase in fibre cross‐sectional area and force and a 30% increase in length. In addition, satellite cell proliferation and differentiation were increased. In C2C12 cells, miR‐29c oligonucleotides caused increased levels of differentiation, as evidenced by an increase in eMHC immunostaining and the myotube fusion index. Accordingly, the mRNA levels of myogenic markers were also increased. Mechanistically, the overexpression of miR‐29c inhibited the expression of the muscle atrophic factors MuRF1, Atrogin‐1 and HDAC4. For the key atrogene MuRF1, we found that miR‐29c can bind to its 3′UTR to mediate repression. Conclusions The results herein suggest that miR‐29c can improve skeletal muscle size and function by stimulating satellite cell proliferation and repressing atrophy‐related genes. Taken together, our results indicate that miR‐29c might be useful as a future therapeutic device in diseases involving decreased skeletal muscle mass.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.13278</identifier><identifier>PMID: 30943315</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>3' Untranslated regions ; Animals ; Atrophy ; Cell Differentiation - genetics ; Cell growth ; Cell proliferation ; Cell Proliferation - genetics ; hypertrophy ; Hypertrophy - genetics ; Hypertrophy - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs - metabolism ; miRNA ; miR‐29c ; mRNA ; Muscle Cells - metabolism ; Muscle Development - genetics ; Muscle Physiology ; Muscle, Skeletal - metabolism ; Muscular Atrophy - genetics ; Muscular Atrophy - metabolism ; Musculoskeletal system ; Myogenesis ; Oligonucleotides ; Regular Paper ; Satellite cells ; Satellite Cells, Skeletal Muscle - metabolism ; Skeletal muscle ; trophicity</subject><ispartof>Acta Physiologica, 2019-08, Vol.226 (4), p.e13278-n/a</ispartof><rights>2019 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Physiological Society</rights><rights>2019 The Authors. Acta Physiologica published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Physiological Society.</rights><rights>Copyright © 2019 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4488-d7626c32b4486a609a3e4ea2bc0bebcf4966922928fc9428d614802ca52094613</citedby><cites>FETCH-LOGICAL-c4488-d7626c32b4486a609a3e4ea2bc0bebcf4966922928fc9428d614802ca52094613</cites><orcidid>0000-0001-7977-8752 ; 0000-0001-6969-3464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.13278$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.13278$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30943315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, William José</creatorcontrib><creatorcontrib>Graça, Flavia Aparecida</creatorcontrib><creatorcontrib>Cruz, André</creatorcontrib><creatorcontrib>Silvestre, João Guilherme</creatorcontrib><creatorcontrib>Labeit, Siegfried</creatorcontrib><creatorcontrib>Miyabara, Elen Haruka</creatorcontrib><creatorcontrib>Yan, Chao Yun Irene</creatorcontrib><creatorcontrib>Wang, Da Zhi</creatorcontrib><creatorcontrib>Moriscot, Anselmo Sigari</creatorcontrib><title>miR‐29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy‐related genes</title><title>Acta Physiologica</title><addtitle>Acta Physiol (Oxf)</addtitle><description>Aim To identify microRNAs (miRs) involved in the regulation of skeletal muscle mass. For that purpose, we have initially utilized an in silico analysis, resulting in the identification of miR‐29c as a positive regulator of muscle mass. Methods miR‐29c was electrotransferred to the tibialis anterior to address its morphometric and functional properties and to determine the level of satellite cell proliferation and differentiation. qPCR was used to investigate the effect of miR‐29c overexpression on trophicity‐related genes. C2C12 cells were used to determine the impact of miR‐29c on myogenesis and a luciferase reporter assay was used to evaluate the ability of miR‐29c to bind to the MuRF1 3′UTR. Results The overexpression of miR‐29c in the tibialis anterior increased muscle mass by 40%, with a corresponding increase in fibre cross‐sectional area and force and a 30% increase in length. In addition, satellite cell proliferation and differentiation were increased. In C2C12 cells, miR‐29c oligonucleotides caused increased levels of differentiation, as evidenced by an increase in eMHC immunostaining and the myotube fusion index. Accordingly, the mRNA levels of myogenic markers were also increased. Mechanistically, the overexpression of miR‐29c inhibited the expression of the muscle atrophic factors MuRF1, Atrogin‐1 and HDAC4. For the key atrogene MuRF1, we found that miR‐29c can bind to its 3′UTR to mediate repression. Conclusions The results herein suggest that miR‐29c can improve skeletal muscle size and function by stimulating satellite cell proliferation and repressing atrophy‐related genes. Taken together, our results indicate that miR‐29c might be useful as a future therapeutic device in diseases involving decreased skeletal muscle mass.</description><subject>3' Untranslated regions</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Cell Differentiation - genetics</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - genetics</subject><subject>hypertrophy</subject><subject>Hypertrophy - genetics</subject><subject>Hypertrophy - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>miR‐29c</subject><subject>mRNA</subject><subject>Muscle Cells - metabolism</subject><subject>Muscle Development - genetics</subject><subject>Muscle Physiology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular Atrophy - genetics</subject><subject>Muscular Atrophy - metabolism</subject><subject>Musculoskeletal system</subject><subject>Myogenesis</subject><subject>Oligonucleotides</subject><subject>Regular Paper</subject><subject>Satellite cells</subject><subject>Satellite Cells, Skeletal Muscle - metabolism</subject><subject>Skeletal muscle</subject><subject>trophicity</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EolXphgdAltggpCn-iyfZII0qoEiVQAjWluPcTFwcO9hOq-x4BCTekCfB0ynDzwJv7Gt_Pj7XB6HHlJzRMl7oadBnlLN1fQ8d07WoV3RN5f3DmtRH6DSlK0IIZZQLxh6iI04awTmtjtH30X748fUbawy24xTDNSScPoODrB0e52Qc4FGnhLXvcD97k23wOA8xzNshzBmPSzBLBlzuOttD1LfAju5sX2rw2f7eaxccYYqQkvVbrHMM07CU9yM4naHDW_CQHqEHvXYJTu_mE_Tp9auP5xery3dv3p5vLldGiLpedWvJpOGsLZXUkjSagwDNWkNaaE0vGikbxhpW96YRrO4kFTVhRlestC8pP0Ev97rT3I7QmWI1aqemaEcdFxW0VX-feDuobbhWsimfSasi8OxOIIYvM6SsRpsMOKc9hDkpxgingjKyQ5_-g16FOfrSXqEqWTqoCC_U8z1lYkgpQn8wQ4naxa12cavbuAv85E_7B_RXuAWge-DGOlj-I6U27y82e9GfzsO6Rw</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Silva, William José</creator><creator>Graça, Flavia Aparecida</creator><creator>Cruz, André</creator><creator>Silvestre, João Guilherme</creator><creator>Labeit, Siegfried</creator><creator>Miyabara, Elen Haruka</creator><creator>Yan, Chao Yun Irene</creator><creator>Wang, Da Zhi</creator><creator>Moriscot, Anselmo Sigari</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7977-8752</orcidid><orcidid>https://orcid.org/0000-0001-6969-3464</orcidid></search><sort><creationdate>201908</creationdate><title>miR‐29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy‐related genes</title><author>Silva, William José ; Graça, Flavia Aparecida ; Cruz, André ; Silvestre, João Guilherme ; Labeit, Siegfried ; Miyabara, Elen Haruka ; Yan, Chao Yun Irene ; Wang, Da Zhi ; Moriscot, Anselmo Sigari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4488-d7626c32b4486a609a3e4ea2bc0bebcf4966922928fc9428d614802ca52094613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3' Untranslated regions</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Cell Differentiation - genetics</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - genetics</topic><topic>hypertrophy</topic><topic>Hypertrophy - genetics</topic><topic>Hypertrophy - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>miR‐29c</topic><topic>mRNA</topic><topic>Muscle Cells - metabolism</topic><topic>Muscle Development - genetics</topic><topic>Muscle Physiology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular Atrophy - genetics</topic><topic>Muscular Atrophy - metabolism</topic><topic>Musculoskeletal system</topic><topic>Myogenesis</topic><topic>Oligonucleotides</topic><topic>Regular Paper</topic><topic>Satellite cells</topic><topic>Satellite Cells, Skeletal Muscle - metabolism</topic><topic>Skeletal muscle</topic><topic>trophicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, William José</creatorcontrib><creatorcontrib>Graça, Flavia Aparecida</creatorcontrib><creatorcontrib>Cruz, André</creatorcontrib><creatorcontrib>Silvestre, João Guilherme</creatorcontrib><creatorcontrib>Labeit, Siegfried</creatorcontrib><creatorcontrib>Miyabara, Elen Haruka</creatorcontrib><creatorcontrib>Yan, Chao Yun Irene</creatorcontrib><creatorcontrib>Wang, Da Zhi</creatorcontrib><creatorcontrib>Moriscot, Anselmo Sigari</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, William José</au><au>Graça, Flavia Aparecida</au><au>Cruz, André</au><au>Silvestre, João Guilherme</au><au>Labeit, Siegfried</au><au>Miyabara, Elen Haruka</au><au>Yan, Chao Yun Irene</au><au>Wang, Da Zhi</au><au>Moriscot, Anselmo Sigari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR‐29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy‐related genes</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol (Oxf)</addtitle><date>2019-08</date><risdate>2019</risdate><volume>226</volume><issue>4</issue><spage>e13278</spage><epage>n/a</epage><pages>e13278-n/a</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Aim To identify microRNAs (miRs) involved in the regulation of skeletal muscle mass. For that purpose, we have initially utilized an in silico analysis, resulting in the identification of miR‐29c as a positive regulator of muscle mass. Methods miR‐29c was electrotransferred to the tibialis anterior to address its morphometric and functional properties and to determine the level of satellite cell proliferation and differentiation. qPCR was used to investigate the effect of miR‐29c overexpression on trophicity‐related genes. C2C12 cells were used to determine the impact of miR‐29c on myogenesis and a luciferase reporter assay was used to evaluate the ability of miR‐29c to bind to the MuRF1 3′UTR. Results The overexpression of miR‐29c in the tibialis anterior increased muscle mass by 40%, with a corresponding increase in fibre cross‐sectional area and force and a 30% increase in length. In addition, satellite cell proliferation and differentiation were increased. In C2C12 cells, miR‐29c oligonucleotides caused increased levels of differentiation, as evidenced by an increase in eMHC immunostaining and the myotube fusion index. Accordingly, the mRNA levels of myogenic markers were also increased. Mechanistically, the overexpression of miR‐29c inhibited the expression of the muscle atrophic factors MuRF1, Atrogin‐1 and HDAC4. For the key atrogene MuRF1, we found that miR‐29c can bind to its 3′UTR to mediate repression. Conclusions The results herein suggest that miR‐29c can improve skeletal muscle size and function by stimulating satellite cell proliferation and repressing atrophy‐related genes. Taken together, our results indicate that miR‐29c might be useful as a future therapeutic device in diseases involving decreased skeletal muscle mass.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30943315</pmid><doi>10.1111/apha.13278</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7977-8752</orcidid><orcidid>https://orcid.org/0000-0001-6969-3464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-1708
ispartof Acta Physiologica, 2019-08, Vol.226 (4), p.e13278-n/a
issn 1748-1708
1748-1716
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900115
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 3' Untranslated regions
Animals
Atrophy
Cell Differentiation - genetics
Cell growth
Cell proliferation
Cell Proliferation - genetics
hypertrophy
Hypertrophy - genetics
Hypertrophy - metabolism
Male
Mice
Mice, Inbred C57BL
MicroRNAs - metabolism
miRNA
miR‐29c
mRNA
Muscle Cells - metabolism
Muscle Development - genetics
Muscle Physiology
Muscle, Skeletal - metabolism
Muscular Atrophy - genetics
Muscular Atrophy - metabolism
Musculoskeletal system
Myogenesis
Oligonucleotides
Regular Paper
Satellite cells
Satellite Cells, Skeletal Muscle - metabolism
Skeletal muscle
trophicity
title miR‐29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy‐related genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR%E2%80%9029c%20improves%20skeletal%20muscle%20mass%20and%20function%20throughout%20myocyte%20proliferation%20and%20differentiation%20and%20by%20repressing%20atrophy%E2%80%90related%20genes&rft.jtitle=Acta%20Physiologica&rft.au=Silva,%20William%20Jos%C3%A9&rft.date=2019-08&rft.volume=226&rft.issue=4&rft.spage=e13278&rft.epage=n/a&rft.pages=e13278-n/a&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.13278&rft_dat=%3Cproquest_pubme%3E2256486503%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256486503&rft_id=info:pmid/30943315&rfr_iscdi=true