Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)

Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology resources 2019-11, Vol.19 (6), p.1672-1680
Hauptverfasser: Fox, Graeme, Preziosi, Richard F., Antwis, Rachael E., Benavides‐Serrato, Milena, Combe, Fraser J., Harris, W. Edwin, Hartley, Ian R., Kitchener, Andrew C., de Kort, Selvino R., Nekaris, Anne‐Isola, Rowntree, Jennifer K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1680
container_issue 6
container_start_page 1672
container_title Molecular ecology resources
container_volume 19
creator Fox, Graeme
Preziosi, Richard F.
Antwis, Rachael E.
Benavides‐Serrato, Milena
Combe, Fraser J.
Harris, W. Edwin
Hartley, Ian R.
Kitchener, Andrew C.
de Kort, Selvino R.
Nekaris, Anne‐Isola
Rowntree, Jennifer K.
description Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polymorphism. By incorporating shotgun next‐generation sequencing data sets from multiple individuals of the same species, we have developed a new method for the optimal design of microsatellite markers. This new tool allows us to increase the rate at which suitable candidate markers are selected by 58% in direct comparisons and facilitate an estimated 16% reduction in costs associated with producing a novel microsatellite panel. Our method enables the visualisation of each microsatellite locus in a multiple sequence alignment allowing several important quality checks to be made. Polymorphic loci can be identified and prioritised. Loci containing fragment‐length‐altering mutations in the flanking regions, which may invalidate assumptions regarding the model of evolution underlying variation at the microsatellite, can be avoided. Priming regions containing point mutations can be detected and avoided, helping to reduce sample‐site‐marker specificity arising from genetic isolation, and the likelihood of null alleles occurring. We demonstrate the utility of this new approach in two species: an echinoderm and a bird. Our method makes a valuable contribution towards minimising genotyping errors and reducing costs associated with developing a novel marker panel. The Python script to perform our method of multi‐individual microsatellite identification (MiMi) is freely available from GitHub (https://github.com/graemefox/mimi).
doi_str_mv 10.1111/1755-0998.13065
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263320149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5335-d09482cc6fb06c6695c7a8e40639efe95ba8d1815e60b8c73690851da5a40f383</originalsourceid><addsrcrecordid>eNqFkc1O3DAUha2qiL-y7q6K1A0sBuw4duwukBDiT2LaTSt1Z3mcm-EiJ07jBMSOR-gz9klwGBi1bOqNLfu7597jQ8hHRg9ZWkesFGJGtVaHjFMp3pHt9c379Vn93CI7Md5SKqkui02yxRnnWvJ8m_j56Af88_gb2wrvsBqtzxp0fYh2AO9xgAwraAes0dkBQ_slO8maqabzkC2hDQ1ktuv6YN1NNoS3xRVEXLbZ_hznePCBbNTWR9h72XfJj_Oz76eXs-tvF1enJ9czJzgXs4rqQuXOyXpBpZNSC1daBQWVXEMNWiysqphiAiRdKFdyqakSrLLCFrTmiu-S45VuNy4aqFyav7fedD02tn8wwaL596XFG7MMdyYJ0dQ8Cey_CPTh1whxMA1GlyzZFsIYTZ5LznPKCp3Qz2_Q2zD2bbJnck51zpVkZaKOVtT0ObGHej0Mo2ZK0kxZmSk385xkqvj0t4c1_xpdAsQKuEcPD__TM_OzryvhJ6a8qtE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309238617</pqid></control><display><type>article</type><title>Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Fox, Graeme ; Preziosi, Richard F. ; Antwis, Rachael E. ; Benavides‐Serrato, Milena ; Combe, Fraser J. ; Harris, W. Edwin ; Hartley, Ian R. ; Kitchener, Andrew C. ; de Kort, Selvino R. ; Nekaris, Anne‐Isola ; Rowntree, Jennifer K.</creator><creatorcontrib>Fox, Graeme ; Preziosi, Richard F. ; Antwis, Rachael E. ; Benavides‐Serrato, Milena ; Combe, Fraser J. ; Harris, W. Edwin ; Hartley, Ian R. ; Kitchener, Andrew C. ; de Kort, Selvino R. ; Nekaris, Anne‐Isola ; Rowntree, Jennifer K.</creatorcontrib><description>Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polymorphism. By incorporating shotgun next‐generation sequencing data sets from multiple individuals of the same species, we have developed a new method for the optimal design of microsatellite markers. This new tool allows us to increase the rate at which suitable candidate markers are selected by 58% in direct comparisons and facilitate an estimated 16% reduction in costs associated with producing a novel microsatellite panel. Our method enables the visualisation of each microsatellite locus in a multiple sequence alignment allowing several important quality checks to be made. Polymorphic loci can be identified and prioritised. Loci containing fragment‐length‐altering mutations in the flanking regions, which may invalidate assumptions regarding the model of evolution underlying variation at the microsatellite, can be avoided. Priming regions containing point mutations can be detected and avoided, helping to reduce sample‐site‐marker specificity arising from genetic isolation, and the likelihood of null alleles occurring. We demonstrate the utility of this new approach in two species: an echinoderm and a bird. Our method makes a valuable contribution towards minimising genotyping errors and reducing costs associated with developing a novel marker panel. The Python script to perform our method of multi‐individual microsatellite identification (MiMi) is freely available from GitHub (https://github.com/graemefox/mimi).</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.13065</identifier><identifier>PMID: 31339632</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Alleles ; Birds ; cost‐effective marker development ; Datasets ; Gene polymorphism ; Genetic isolation ; Genetic markers ; Genetic Markers - genetics ; Genome - genetics ; Genomes ; Genomics - methods ; Genotype ; Genotyping ; High-Throughput Nucleotide Sequencing - methods ; high‐throughput sequencing ; in silico quality control ; Laboratory tests ; Loci ; Marker panels ; microsatellite design ; Microsatellite Repeats - genetics ; Microsatellites ; Mutation ; Nucleotide sequence ; Point Mutation - genetics ; polymorphic loci detection ; Polymorphism ; Polymorphism, Genetic - genetics ; Priming ; Programming languages ; Resource ; RESOURCE ARTICLES ; short tandem repeat (STR)</subject><ispartof>Molecular ecology resources, 2019-11, Vol.19 (6), p.1672-1680</ispartof><rights>2019 The Authors. published by John Wiley &amp; Sons Ltd</rights><rights>2019 The Authors. Molecular Ecology Resources published by John Wiley &amp; Sons Ltd.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 The Authors. published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5335-d09482cc6fb06c6695c7a8e40639efe95ba8d1815e60b8c73690851da5a40f383</citedby><cites>FETCH-LOGICAL-c5335-d09482cc6fb06c6695c7a8e40639efe95ba8d1815e60b8c73690851da5a40f383</cites><orcidid>0000-0002-1644-8673 ; 0000-0001-8249-8057 ; 0000-0002-8849-8194 ; 0000-0001-7980-6944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.13065$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.13065$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31339632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, Graeme</creatorcontrib><creatorcontrib>Preziosi, Richard F.</creatorcontrib><creatorcontrib>Antwis, Rachael E.</creatorcontrib><creatorcontrib>Benavides‐Serrato, Milena</creatorcontrib><creatorcontrib>Combe, Fraser J.</creatorcontrib><creatorcontrib>Harris, W. Edwin</creatorcontrib><creatorcontrib>Hartley, Ian R.</creatorcontrib><creatorcontrib>Kitchener, Andrew C.</creatorcontrib><creatorcontrib>de Kort, Selvino R.</creatorcontrib><creatorcontrib>Nekaris, Anne‐Isola</creatorcontrib><creatorcontrib>Rowntree, Jennifer K.</creatorcontrib><title>Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polymorphism. By incorporating shotgun next‐generation sequencing data sets from multiple individuals of the same species, we have developed a new method for the optimal design of microsatellite markers. This new tool allows us to increase the rate at which suitable candidate markers are selected by 58% in direct comparisons and facilitate an estimated 16% reduction in costs associated with producing a novel microsatellite panel. Our method enables the visualisation of each microsatellite locus in a multiple sequence alignment allowing several important quality checks to be made. Polymorphic loci can be identified and prioritised. Loci containing fragment‐length‐altering mutations in the flanking regions, which may invalidate assumptions regarding the model of evolution underlying variation at the microsatellite, can be avoided. Priming regions containing point mutations can be detected and avoided, helping to reduce sample‐site‐marker specificity arising from genetic isolation, and the likelihood of null alleles occurring. We demonstrate the utility of this new approach in two species: an echinoderm and a bird. Our method makes a valuable contribution towards minimising genotyping errors and reducing costs associated with developing a novel marker panel. The Python script to perform our method of multi‐individual microsatellite identification (MiMi) is freely available from GitHub (https://github.com/graemefox/mimi).</description><subject>Alleles</subject><subject>Birds</subject><subject>cost‐effective marker development</subject><subject>Datasets</subject><subject>Gene polymorphism</subject><subject>Genetic isolation</subject><subject>Genetic markers</subject><subject>Genetic Markers - genetics</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Genotype</subject><subject>Genotyping</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>high‐throughput sequencing</subject><subject>in silico quality control</subject><subject>Laboratory tests</subject><subject>Loci</subject><subject>Marker panels</subject><subject>microsatellite design</subject><subject>Microsatellite Repeats - genetics</subject><subject>Microsatellites</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Point Mutation - genetics</subject><subject>polymorphic loci detection</subject><subject>Polymorphism</subject><subject>Polymorphism, Genetic - genetics</subject><subject>Priming</subject><subject>Programming languages</subject><subject>Resource</subject><subject>RESOURCE ARTICLES</subject><subject>short tandem repeat (STR)</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1O3DAUha2qiL-y7q6K1A0sBuw4duwukBDiT2LaTSt1Z3mcm-EiJ07jBMSOR-gz9klwGBi1bOqNLfu7597jQ8hHRg9ZWkesFGJGtVaHjFMp3pHt9c379Vn93CI7Md5SKqkui02yxRnnWvJ8m_j56Af88_gb2wrvsBqtzxp0fYh2AO9xgAwraAes0dkBQ_slO8maqabzkC2hDQ1ktuv6YN1NNoS3xRVEXLbZ_hznePCBbNTWR9h72XfJj_Oz76eXs-tvF1enJ9czJzgXs4rqQuXOyXpBpZNSC1daBQWVXEMNWiysqphiAiRdKFdyqakSrLLCFrTmiu-S45VuNy4aqFyav7fedD02tn8wwaL596XFG7MMdyYJ0dQ8Cey_CPTh1whxMA1GlyzZFsIYTZ5LznPKCp3Qz2_Q2zD2bbJnck51zpVkZaKOVtT0ObGHej0Mo2ZK0kxZmSk385xkqvj0t4c1_xpdAsQKuEcPD__TM_OzryvhJ6a8qtE</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Fox, Graeme</creator><creator>Preziosi, Richard F.</creator><creator>Antwis, Rachael E.</creator><creator>Benavides‐Serrato, Milena</creator><creator>Combe, Fraser J.</creator><creator>Harris, W. Edwin</creator><creator>Hartley, Ian R.</creator><creator>Kitchener, Andrew C.</creator><creator>de Kort, Selvino R.</creator><creator>Nekaris, Anne‐Isola</creator><creator>Rowntree, Jennifer K.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1644-8673</orcidid><orcidid>https://orcid.org/0000-0001-8249-8057</orcidid><orcidid>https://orcid.org/0000-0002-8849-8194</orcidid><orcidid>https://orcid.org/0000-0001-7980-6944</orcidid></search><sort><creationdate>201911</creationdate><title>Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)</title><author>Fox, Graeme ; Preziosi, Richard F. ; Antwis, Rachael E. ; Benavides‐Serrato, Milena ; Combe, Fraser J. ; Harris, W. Edwin ; Hartley, Ian R. ; Kitchener, Andrew C. ; de Kort, Selvino R. ; Nekaris, Anne‐Isola ; Rowntree, Jennifer K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5335-d09482cc6fb06c6695c7a8e40639efe95ba8d1815e60b8c73690851da5a40f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alleles</topic><topic>Birds</topic><topic>cost‐effective marker development</topic><topic>Datasets</topic><topic>Gene polymorphism</topic><topic>Genetic isolation</topic><topic>Genetic markers</topic><topic>Genetic Markers - genetics</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Genotype</topic><topic>Genotyping</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>high‐throughput sequencing</topic><topic>in silico quality control</topic><topic>Laboratory tests</topic><topic>Loci</topic><topic>Marker panels</topic><topic>microsatellite design</topic><topic>Microsatellite Repeats - genetics</topic><topic>Microsatellites</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Point Mutation - genetics</topic><topic>polymorphic loci detection</topic><topic>Polymorphism</topic><topic>Polymorphism, Genetic - genetics</topic><topic>Priming</topic><topic>Programming languages</topic><topic>Resource</topic><topic>RESOURCE ARTICLES</topic><topic>short tandem repeat (STR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Graeme</creatorcontrib><creatorcontrib>Preziosi, Richard F.</creatorcontrib><creatorcontrib>Antwis, Rachael E.</creatorcontrib><creatorcontrib>Benavides‐Serrato, Milena</creatorcontrib><creatorcontrib>Combe, Fraser J.</creatorcontrib><creatorcontrib>Harris, W. Edwin</creatorcontrib><creatorcontrib>Hartley, Ian R.</creatorcontrib><creatorcontrib>Kitchener, Andrew C.</creatorcontrib><creatorcontrib>de Kort, Selvino R.</creatorcontrib><creatorcontrib>Nekaris, Anne‐Isola</creatorcontrib><creatorcontrib>Rowntree, Jennifer K.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Graeme</au><au>Preziosi, Richard F.</au><au>Antwis, Rachael E.</au><au>Benavides‐Serrato, Milena</au><au>Combe, Fraser J.</au><au>Harris, W. Edwin</au><au>Hartley, Ian R.</au><au>Kitchener, Andrew C.</au><au>de Kort, Selvino R.</au><au>Nekaris, Anne‐Isola</au><au>Rowntree, Jennifer K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2019-11</date><risdate>2019</risdate><volume>19</volume><issue>6</issue><spage>1672</spage><epage>1680</epage><pages>1672-1680</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polymorphism. By incorporating shotgun next‐generation sequencing data sets from multiple individuals of the same species, we have developed a new method for the optimal design of microsatellite markers. This new tool allows us to increase the rate at which suitable candidate markers are selected by 58% in direct comparisons and facilitate an estimated 16% reduction in costs associated with producing a novel microsatellite panel. Our method enables the visualisation of each microsatellite locus in a multiple sequence alignment allowing several important quality checks to be made. Polymorphic loci can be identified and prioritised. Loci containing fragment‐length‐altering mutations in the flanking regions, which may invalidate assumptions regarding the model of evolution underlying variation at the microsatellite, can be avoided. Priming regions containing point mutations can be detected and avoided, helping to reduce sample‐site‐marker specificity arising from genetic isolation, and the likelihood of null alleles occurring. We demonstrate the utility of this new approach in two species: an echinoderm and a bird. Our method makes a valuable contribution towards minimising genotyping errors and reducing costs associated with developing a novel marker panel. The Python script to perform our method of multi‐individual microsatellite identification (MiMi) is freely available from GitHub (https://github.com/graemefox/mimi).</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31339632</pmid><doi>10.1111/1755-0998.13065</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1644-8673</orcidid><orcidid>https://orcid.org/0000-0001-8249-8057</orcidid><orcidid>https://orcid.org/0000-0002-8849-8194</orcidid><orcidid>https://orcid.org/0000-0001-7980-6944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-098X
ispartof Molecular ecology resources, 2019-11, Vol.19 (6), p.1672-1680
issn 1755-098X
1755-0998
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900094
source MEDLINE; Wiley Online Library All Journals
subjects Alleles
Birds
cost‐effective marker development
Datasets
Gene polymorphism
Genetic isolation
Genetic markers
Genetic Markers - genetics
Genome - genetics
Genomes
Genomics - methods
Genotype
Genotyping
High-Throughput Nucleotide Sequencing - methods
high‐throughput sequencing
in silico quality control
Laboratory tests
Loci
Marker panels
microsatellite design
Microsatellite Repeats - genetics
Microsatellites
Mutation
Nucleotide sequence
Point Mutation - genetics
polymorphic loci detection
Polymorphism
Polymorphism, Genetic - genetics
Priming
Programming languages
Resource
RESOURCE ARTICLES
short tandem repeat (STR)
title Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90individual%20microsatellite%20identification:%20A%20multiple%20genome%20approach%20to%20microsatellite%20design%20(MiMi)&rft.jtitle=Molecular%20ecology%20resources&rft.au=Fox,%20Graeme&rft.date=2019-11&rft.volume=19&rft.issue=6&rft.spage=1672&rft.epage=1680&rft.pages=1672-1680&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.13065&rft_dat=%3Cproquest_pubme%3E2263320149%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309238617&rft_id=info:pmid/31339632&rfr_iscdi=true