Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)
Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polym...
Gespeichert in:
Veröffentlicht in: | Molecular ecology resources 2019-11, Vol.19 (6), p.1672-1680 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1680 |
---|---|
container_issue | 6 |
container_start_page | 1672 |
container_title | Molecular ecology resources |
container_volume | 19 |
creator | Fox, Graeme Preziosi, Richard F. Antwis, Rachael E. Benavides‐Serrato, Milena Combe, Fraser J. Harris, W. Edwin Hartley, Ian R. Kitchener, Andrew C. de Kort, Selvino R. Nekaris, Anne‐Isola Rowntree, Jennifer K. |
description | Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polymorphism. By incorporating shotgun next‐generation sequencing data sets from multiple individuals of the same species, we have developed a new method for the optimal design of microsatellite markers. This new tool allows us to increase the rate at which suitable candidate markers are selected by 58% in direct comparisons and facilitate an estimated 16% reduction in costs associated with producing a novel microsatellite panel. Our method enables the visualisation of each microsatellite locus in a multiple sequence alignment allowing several important quality checks to be made. Polymorphic loci can be identified and prioritised. Loci containing fragment‐length‐altering mutations in the flanking regions, which may invalidate assumptions regarding the model of evolution underlying variation at the microsatellite, can be avoided. Priming regions containing point mutations can be detected and avoided, helping to reduce sample‐site‐marker specificity arising from genetic isolation, and the likelihood of null alleles occurring. We demonstrate the utility of this new approach in two species: an echinoderm and a bird. Our method makes a valuable contribution towards minimising genotyping errors and reducing costs associated with developing a novel marker panel. The Python script to perform our method of multi‐individual microsatellite identification (MiMi) is freely available from GitHub (https://github.com/graemefox/mimi). |
doi_str_mv | 10.1111/1755-0998.13065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263320149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5335-d09482cc6fb06c6695c7a8e40639efe95ba8d1815e60b8c73690851da5a40f383</originalsourceid><addsrcrecordid>eNqFkc1O3DAUha2qiL-y7q6K1A0sBuw4duwukBDiT2LaTSt1Z3mcm-EiJ07jBMSOR-gz9klwGBi1bOqNLfu7597jQ8hHRg9ZWkesFGJGtVaHjFMp3pHt9c379Vn93CI7Md5SKqkui02yxRnnWvJ8m_j56Af88_gb2wrvsBqtzxp0fYh2AO9xgAwraAes0dkBQ_slO8maqabzkC2hDQ1ktuv6YN1NNoS3xRVEXLbZ_hznePCBbNTWR9h72XfJj_Oz76eXs-tvF1enJ9czJzgXs4rqQuXOyXpBpZNSC1daBQWVXEMNWiysqphiAiRdKFdyqakSrLLCFrTmiu-S45VuNy4aqFyav7fedD02tn8wwaL596XFG7MMdyYJ0dQ8Cey_CPTh1whxMA1GlyzZFsIYTZ5LznPKCp3Qz2_Q2zD2bbJnck51zpVkZaKOVtT0ObGHej0Mo2ZK0kxZmSk385xkqvj0t4c1_xpdAsQKuEcPD__TM_OzryvhJ6a8qtE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309238617</pqid></control><display><type>article</type><title>Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Fox, Graeme ; Preziosi, Richard F. ; Antwis, Rachael E. ; Benavides‐Serrato, Milena ; Combe, Fraser J. ; Harris, W. Edwin ; Hartley, Ian R. ; Kitchener, Andrew C. ; de Kort, Selvino R. ; Nekaris, Anne‐Isola ; Rowntree, Jennifer K.</creator><creatorcontrib>Fox, Graeme ; Preziosi, Richard F. ; Antwis, Rachael E. ; Benavides‐Serrato, Milena ; Combe, Fraser J. ; Harris, W. Edwin ; Hartley, Ian R. ; Kitchener, Andrew C. ; de Kort, Selvino R. ; Nekaris, Anne‐Isola ; Rowntree, Jennifer K.</creatorcontrib><description>Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polymorphism. By incorporating shotgun next‐generation sequencing data sets from multiple individuals of the same species, we have developed a new method for the optimal design of microsatellite markers. This new tool allows us to increase the rate at which suitable candidate markers are selected by 58% in direct comparisons and facilitate an estimated 16% reduction in costs associated with producing a novel microsatellite panel. Our method enables the visualisation of each microsatellite locus in a multiple sequence alignment allowing several important quality checks to be made. Polymorphic loci can be identified and prioritised. Loci containing fragment‐length‐altering mutations in the flanking regions, which may invalidate assumptions regarding the model of evolution underlying variation at the microsatellite, can be avoided. Priming regions containing point mutations can be detected and avoided, helping to reduce sample‐site‐marker specificity arising from genetic isolation, and the likelihood of null alleles occurring. We demonstrate the utility of this new approach in two species: an echinoderm and a bird. Our method makes a valuable contribution towards minimising genotyping errors and reducing costs associated with developing a novel marker panel. The Python script to perform our method of multi‐individual microsatellite identification (MiMi) is freely available from GitHub (https://github.com/graemefox/mimi).</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.13065</identifier><identifier>PMID: 31339632</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Alleles ; Birds ; cost‐effective marker development ; Datasets ; Gene polymorphism ; Genetic isolation ; Genetic markers ; Genetic Markers - genetics ; Genome - genetics ; Genomes ; Genomics - methods ; Genotype ; Genotyping ; High-Throughput Nucleotide Sequencing - methods ; high‐throughput sequencing ; in silico quality control ; Laboratory tests ; Loci ; Marker panels ; microsatellite design ; Microsatellite Repeats - genetics ; Microsatellites ; Mutation ; Nucleotide sequence ; Point Mutation - genetics ; polymorphic loci detection ; Polymorphism ; Polymorphism, Genetic - genetics ; Priming ; Programming languages ; Resource ; RESOURCE ARTICLES ; short tandem repeat (STR)</subject><ispartof>Molecular ecology resources, 2019-11, Vol.19 (6), p.1672-1680</ispartof><rights>2019 The Authors. published by John Wiley & Sons Ltd</rights><rights>2019 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 The Authors. published by John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5335-d09482cc6fb06c6695c7a8e40639efe95ba8d1815e60b8c73690851da5a40f383</citedby><cites>FETCH-LOGICAL-c5335-d09482cc6fb06c6695c7a8e40639efe95ba8d1815e60b8c73690851da5a40f383</cites><orcidid>0000-0002-1644-8673 ; 0000-0001-8249-8057 ; 0000-0002-8849-8194 ; 0000-0001-7980-6944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.13065$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.13065$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31339632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, Graeme</creatorcontrib><creatorcontrib>Preziosi, Richard F.</creatorcontrib><creatorcontrib>Antwis, Rachael E.</creatorcontrib><creatorcontrib>Benavides‐Serrato, Milena</creatorcontrib><creatorcontrib>Combe, Fraser J.</creatorcontrib><creatorcontrib>Harris, W. Edwin</creatorcontrib><creatorcontrib>Hartley, Ian R.</creatorcontrib><creatorcontrib>Kitchener, Andrew C.</creatorcontrib><creatorcontrib>de Kort, Selvino R.</creatorcontrib><creatorcontrib>Nekaris, Anne‐Isola</creatorcontrib><creatorcontrib>Rowntree, Jennifer K.</creatorcontrib><title>Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polymorphism. By incorporating shotgun next‐generation sequencing data sets from multiple individuals of the same species, we have developed a new method for the optimal design of microsatellite markers. This new tool allows us to increase the rate at which suitable candidate markers are selected by 58% in direct comparisons and facilitate an estimated 16% reduction in costs associated with producing a novel microsatellite panel. Our method enables the visualisation of each microsatellite locus in a multiple sequence alignment allowing several important quality checks to be made. Polymorphic loci can be identified and prioritised. Loci containing fragment‐length‐altering mutations in the flanking regions, which may invalidate assumptions regarding the model of evolution underlying variation at the microsatellite, can be avoided. Priming regions containing point mutations can be detected and avoided, helping to reduce sample‐site‐marker specificity arising from genetic isolation, and the likelihood of null alleles occurring. We demonstrate the utility of this new approach in two species: an echinoderm and a bird. Our method makes a valuable contribution towards minimising genotyping errors and reducing costs associated with developing a novel marker panel. The Python script to perform our method of multi‐individual microsatellite identification (MiMi) is freely available from GitHub (https://github.com/graemefox/mimi).</description><subject>Alleles</subject><subject>Birds</subject><subject>cost‐effective marker development</subject><subject>Datasets</subject><subject>Gene polymorphism</subject><subject>Genetic isolation</subject><subject>Genetic markers</subject><subject>Genetic Markers - genetics</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Genotype</subject><subject>Genotyping</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>high‐throughput sequencing</subject><subject>in silico quality control</subject><subject>Laboratory tests</subject><subject>Loci</subject><subject>Marker panels</subject><subject>microsatellite design</subject><subject>Microsatellite Repeats - genetics</subject><subject>Microsatellites</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Point Mutation - genetics</subject><subject>polymorphic loci detection</subject><subject>Polymorphism</subject><subject>Polymorphism, Genetic - genetics</subject><subject>Priming</subject><subject>Programming languages</subject><subject>Resource</subject><subject>RESOURCE ARTICLES</subject><subject>short tandem repeat (STR)</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1O3DAUha2qiL-y7q6K1A0sBuw4duwukBDiT2LaTSt1Z3mcm-EiJ07jBMSOR-gz9klwGBi1bOqNLfu7597jQ8hHRg9ZWkesFGJGtVaHjFMp3pHt9c379Vn93CI7Md5SKqkui02yxRnnWvJ8m_j56Af88_gb2wrvsBqtzxp0fYh2AO9xgAwraAes0dkBQ_slO8maqabzkC2hDQ1ktuv6YN1NNoS3xRVEXLbZ_hznePCBbNTWR9h72XfJj_Oz76eXs-tvF1enJ9czJzgXs4rqQuXOyXpBpZNSC1daBQWVXEMNWiysqphiAiRdKFdyqakSrLLCFrTmiu-S45VuNy4aqFyav7fedD02tn8wwaL596XFG7MMdyYJ0dQ8Cey_CPTh1whxMA1GlyzZFsIYTZ5LznPKCp3Qz2_Q2zD2bbJnck51zpVkZaKOVtT0ObGHej0Mo2ZK0kxZmSk385xkqvj0t4c1_xpdAsQKuEcPD__TM_OzryvhJ6a8qtE</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Fox, Graeme</creator><creator>Preziosi, Richard F.</creator><creator>Antwis, Rachael E.</creator><creator>Benavides‐Serrato, Milena</creator><creator>Combe, Fraser J.</creator><creator>Harris, W. Edwin</creator><creator>Hartley, Ian R.</creator><creator>Kitchener, Andrew C.</creator><creator>de Kort, Selvino R.</creator><creator>Nekaris, Anne‐Isola</creator><creator>Rowntree, Jennifer K.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1644-8673</orcidid><orcidid>https://orcid.org/0000-0001-8249-8057</orcidid><orcidid>https://orcid.org/0000-0002-8849-8194</orcidid><orcidid>https://orcid.org/0000-0001-7980-6944</orcidid></search><sort><creationdate>201911</creationdate><title>Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)</title><author>Fox, Graeme ; Preziosi, Richard F. ; Antwis, Rachael E. ; Benavides‐Serrato, Milena ; Combe, Fraser J. ; Harris, W. Edwin ; Hartley, Ian R. ; Kitchener, Andrew C. ; de Kort, Selvino R. ; Nekaris, Anne‐Isola ; Rowntree, Jennifer K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5335-d09482cc6fb06c6695c7a8e40639efe95ba8d1815e60b8c73690851da5a40f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alleles</topic><topic>Birds</topic><topic>cost‐effective marker development</topic><topic>Datasets</topic><topic>Gene polymorphism</topic><topic>Genetic isolation</topic><topic>Genetic markers</topic><topic>Genetic Markers - genetics</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Genotype</topic><topic>Genotyping</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>high‐throughput sequencing</topic><topic>in silico quality control</topic><topic>Laboratory tests</topic><topic>Loci</topic><topic>Marker panels</topic><topic>microsatellite design</topic><topic>Microsatellite Repeats - genetics</topic><topic>Microsatellites</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Point Mutation - genetics</topic><topic>polymorphic loci detection</topic><topic>Polymorphism</topic><topic>Polymorphism, Genetic - genetics</topic><topic>Priming</topic><topic>Programming languages</topic><topic>Resource</topic><topic>RESOURCE ARTICLES</topic><topic>short tandem repeat (STR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Graeme</creatorcontrib><creatorcontrib>Preziosi, Richard F.</creatorcontrib><creatorcontrib>Antwis, Rachael E.</creatorcontrib><creatorcontrib>Benavides‐Serrato, Milena</creatorcontrib><creatorcontrib>Combe, Fraser J.</creatorcontrib><creatorcontrib>Harris, W. Edwin</creatorcontrib><creatorcontrib>Hartley, Ian R.</creatorcontrib><creatorcontrib>Kitchener, Andrew C.</creatorcontrib><creatorcontrib>de Kort, Selvino R.</creatorcontrib><creatorcontrib>Nekaris, Anne‐Isola</creatorcontrib><creatorcontrib>Rowntree, Jennifer K.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Graeme</au><au>Preziosi, Richard F.</au><au>Antwis, Rachael E.</au><au>Benavides‐Serrato, Milena</au><au>Combe, Fraser J.</au><au>Harris, W. Edwin</au><au>Hartley, Ian R.</au><au>Kitchener, Andrew C.</au><au>de Kort, Selvino R.</au><au>Nekaris, Anne‐Isola</au><au>Rowntree, Jennifer K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi)</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2019-11</date><risdate>2019</risdate><volume>19</volume><issue>6</issue><spage>1672</spage><epage>1680</epage><pages>1672-1680</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polymorphism. By incorporating shotgun next‐generation sequencing data sets from multiple individuals of the same species, we have developed a new method for the optimal design of microsatellite markers. This new tool allows us to increase the rate at which suitable candidate markers are selected by 58% in direct comparisons and facilitate an estimated 16% reduction in costs associated with producing a novel microsatellite panel. Our method enables the visualisation of each microsatellite locus in a multiple sequence alignment allowing several important quality checks to be made. Polymorphic loci can be identified and prioritised. Loci containing fragment‐length‐altering mutations in the flanking regions, which may invalidate assumptions regarding the model of evolution underlying variation at the microsatellite, can be avoided. Priming regions containing point mutations can be detected and avoided, helping to reduce sample‐site‐marker specificity arising from genetic isolation, and the likelihood of null alleles occurring. We demonstrate the utility of this new approach in two species: an echinoderm and a bird. Our method makes a valuable contribution towards minimising genotyping errors and reducing costs associated with developing a novel marker panel. The Python script to perform our method of multi‐individual microsatellite identification (MiMi) is freely available from GitHub (https://github.com/graemefox/mimi).</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31339632</pmid><doi>10.1111/1755-0998.13065</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1644-8673</orcidid><orcidid>https://orcid.org/0000-0001-8249-8057</orcidid><orcidid>https://orcid.org/0000-0002-8849-8194</orcidid><orcidid>https://orcid.org/0000-0001-7980-6944</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-098X |
ispartof | Molecular ecology resources, 2019-11, Vol.19 (6), p.1672-1680 |
issn | 1755-098X 1755-0998 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6900094 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Alleles Birds cost‐effective marker development Datasets Gene polymorphism Genetic isolation Genetic markers Genetic Markers - genetics Genome - genetics Genomes Genomics - methods Genotype Genotyping High-Throughput Nucleotide Sequencing - methods high‐throughput sequencing in silico quality control Laboratory tests Loci Marker panels microsatellite design Microsatellite Repeats - genetics Microsatellites Mutation Nucleotide sequence Point Mutation - genetics polymorphic loci detection Polymorphism Polymorphism, Genetic - genetics Priming Programming languages Resource RESOURCE ARTICLES short tandem repeat (STR) |
title | Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90individual%20microsatellite%20identification:%20A%20multiple%20genome%20approach%20to%20microsatellite%20design%20(MiMi)&rft.jtitle=Molecular%20ecology%20resources&rft.au=Fox,%20Graeme&rft.date=2019-11&rft.volume=19&rft.issue=6&rft.spage=1672&rft.epage=1680&rft.pages=1672-1680&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.13065&rft_dat=%3Cproquest_pubme%3E2263320149%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309238617&rft_id=info:pmid/31339632&rfr_iscdi=true |