Combining next‐generation sequencing and progeny testing for rapid identification of induced recessive and dominant mutations in maize M2 individuals

Summary Molecular identification of mutant alleles responsible for certain phenotypic alterations is a central goal of genetic analyses. In this study we describe a rapid procedure suitable for the identification of induced recessive and dominant mutations applied to two Zea mays mutants expressing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2019-11, Vol.100 (4), p.851-862
Hauptverfasser: Heuermann, Marc C., Rosso, Mario G., Mascher, Martin, Brandt, Ronny, Tschiersch, Henning, Altschmied, Lothar, Altmann, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 862
container_issue 4
container_start_page 851
container_title The Plant journal : for cell and molecular biology
container_volume 100
creator Heuermann, Marc C.
Rosso, Mario G.
Mascher, Martin
Brandt, Ronny
Tschiersch, Henning
Altschmied, Lothar
Altmann, Thomas
description Summary Molecular identification of mutant alleles responsible for certain phenotypic alterations is a central goal of genetic analyses. In this study we describe a rapid procedure suitable for the identification of induced recessive and dominant mutations applied to two Zea mays mutants expressing a dwarf and a pale green phenotype, respectively, which were obtained through pollen ethyl methanesulfonate (EMS) mutagenesis. First, without prior backcrossing, induced mutations (single nucleotide polymorphisms, SNPs) segregating in a (M2) family derived from a heterozygous (M1) parent were identified using whole‐genome shotgun (WGS) sequencing of a small number of (M2) individuals with mutant and wild‐type phenotypes. Second, the state of zygosity of the mutation causing the phenotype was determined for each sequenced individual by phenotypic segregation analysis of the self‐pollinated (M3) offspring. Finally, we filtered for segregating EMS‐induced SNPs whose state of zygosity matched the determined state of zygosity of the mutant locus in each sequenced (M2) individuals. Through this procedure, combining sequencing of individuals and Mendelian inheritance, three and four SNPs in linkage passed our zygosity filter for the homozygous dwarf and heterozygous pale green mutation, respectively. The dwarf mutation was found to be allelic to the an1 locus and caused by an insertion in the largest exon of the AN1 gene. The pale green mutation affected the nuclear W2 gene and was caused by a non‐synonymous amino acid exchange in encoded chloroplast DNA polymerase with a predicted deleterious effect. This coincided with lower cpDNA levels in pale green plants. Significance Statement We demonstrate a rapid mapping approach by combining the power of next‐generation sequencing of M2 individuals with Mendelian inheritance analysis to identify a recessive and a semi‐dominant mutation in two independent EMS mutagenized maize families.
doi_str_mv 10.1111/tpj.14431
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6899793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314169962</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2611-81830d6bf3e8ab78cd66013cb9abe57effe825bacb591e59be11f2221c693d253</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtRAVXRYO_ANLnNNm7MRJLkhoxaeKyqFI3CzHnixebexgOwvLqT-hN_5ffwne3Qqpc5mR35snz3uEvILyAnJdpmlzAVXF4QlZABd1wYF_f0oWZSfKoqmAnZPnMW7KEhouqmfknAOIjnO-IH9Xfuyts25NHf5O97d3a3QYVLLe0Yg_Z3T6ACpn6BR8Bvc0YUyHt8EHGtRkDbUGXbKD1ac9P1DrzKzR0IAaY7Q7PCoYP1qnXKLjnI7UmIl0VPYP0i_ssGR31sxqG1-QsyE3fPnQl-Tb-3c3q4_F1fWHT6u3V8XEBEDRQstLI_qBY6v6ptVGiBK47jvVY93gMGDL6l7pvu4A665HgIExBjrfb1jNl-TNSXea-xGNzncEtZVTsKMKe-mVlY8RZ3_Itd9J0XZdkz1cktcPAsFnt2KSGz8Hl_8sGYcq-9wJllmXJ9Yvu8X9f3ko5SFAmQOUxwDlzdfPx4H_A45GlQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314169962</pqid></control><display><type>article</type><title>Combining next‐generation sequencing and progeny testing for rapid identification of induced recessive and dominant mutations in maize M2 individuals</title><source>Wiley Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Heuermann, Marc C. ; Rosso, Mario G. ; Mascher, Martin ; Brandt, Ronny ; Tschiersch, Henning ; Altschmied, Lothar ; Altmann, Thomas</creator><creatorcontrib>Heuermann, Marc C. ; Rosso, Mario G. ; Mascher, Martin ; Brandt, Ronny ; Tschiersch, Henning ; Altschmied, Lothar ; Altmann, Thomas</creatorcontrib><description>Summary Molecular identification of mutant alleles responsible for certain phenotypic alterations is a central goal of genetic analyses. In this study we describe a rapid procedure suitable for the identification of induced recessive and dominant mutations applied to two Zea mays mutants expressing a dwarf and a pale green phenotype, respectively, which were obtained through pollen ethyl methanesulfonate (EMS) mutagenesis. First, without prior backcrossing, induced mutations (single nucleotide polymorphisms, SNPs) segregating in a (M2) family derived from a heterozygous (M1) parent were identified using whole‐genome shotgun (WGS) sequencing of a small number of (M2) individuals with mutant and wild‐type phenotypes. Second, the state of zygosity of the mutation causing the phenotype was determined for each sequenced individual by phenotypic segregation analysis of the self‐pollinated (M3) offspring. Finally, we filtered for segregating EMS‐induced SNPs whose state of zygosity matched the determined state of zygosity of the mutant locus in each sequenced (M2) individuals. Through this procedure, combining sequencing of individuals and Mendelian inheritance, three and four SNPs in linkage passed our zygosity filter for the homozygous dwarf and heterozygous pale green mutation, respectively. The dwarf mutation was found to be allelic to the an1 locus and caused by an insertion in the largest exon of the AN1 gene. The pale green mutation affected the nuclear W2 gene and was caused by a non‐synonymous amino acid exchange in encoded chloroplast DNA polymerase with a predicted deleterious effect. This coincided with lower cpDNA levels in pale green plants. Significance Statement We demonstrate a rapid mapping approach by combining the power of next‐generation sequencing of M2 individuals with Mendelian inheritance analysis to identify a recessive and a semi‐dominant mutation in two independent EMS mutagenized maize families.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.14431</identifier><identifier>PMID: 31169333</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Amino acids ; Chloroplast DNA ; Chloroplasts ; Corn ; Deoxyribonucleic acid ; DNA ; DNA polymerase ; DNA-directed DNA polymerase ; dwarf ; EMS mutagenesis ; Ethyl methanesulfonate ; Gene sequencing ; Genetic analysis ; Genomes ; Heredity ; Insertion ; Loci ; Mutagenesis ; Mutants ; Mutation ; mutation identification ; Nucleotides ; Offspring ; pale green ; Phenotypes ; Pollen ; Progeny ; Single-nucleotide polymorphism ; Technical Advance ; Zea mays ; Zygosity ; zygosity filter</subject><ispartof>The Plant journal : for cell and molecular biology, 2019-11, Vol.100 (4), p.851-862</ispartof><rights>2019 The Authors. The published by Society for Experimental Biology and John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2019 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5520-5287 ; 0000-0002-3759-360X ; 0000-0001-6373-6013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.14431$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.14431$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Heuermann, Marc C.</creatorcontrib><creatorcontrib>Rosso, Mario G.</creatorcontrib><creatorcontrib>Mascher, Martin</creatorcontrib><creatorcontrib>Brandt, Ronny</creatorcontrib><creatorcontrib>Tschiersch, Henning</creatorcontrib><creatorcontrib>Altschmied, Lothar</creatorcontrib><creatorcontrib>Altmann, Thomas</creatorcontrib><title>Combining next‐generation sequencing and progeny testing for rapid identification of induced recessive and dominant mutations in maize M2 individuals</title><title>The Plant journal : for cell and molecular biology</title><description>Summary Molecular identification of mutant alleles responsible for certain phenotypic alterations is a central goal of genetic analyses. In this study we describe a rapid procedure suitable for the identification of induced recessive and dominant mutations applied to two Zea mays mutants expressing a dwarf and a pale green phenotype, respectively, which were obtained through pollen ethyl methanesulfonate (EMS) mutagenesis. First, without prior backcrossing, induced mutations (single nucleotide polymorphisms, SNPs) segregating in a (M2) family derived from a heterozygous (M1) parent were identified using whole‐genome shotgun (WGS) sequencing of a small number of (M2) individuals with mutant and wild‐type phenotypes. Second, the state of zygosity of the mutation causing the phenotype was determined for each sequenced individual by phenotypic segregation analysis of the self‐pollinated (M3) offspring. Finally, we filtered for segregating EMS‐induced SNPs whose state of zygosity matched the determined state of zygosity of the mutant locus in each sequenced (M2) individuals. Through this procedure, combining sequencing of individuals and Mendelian inheritance, three and four SNPs in linkage passed our zygosity filter for the homozygous dwarf and heterozygous pale green mutation, respectively. The dwarf mutation was found to be allelic to the an1 locus and caused by an insertion in the largest exon of the AN1 gene. The pale green mutation affected the nuclear W2 gene and was caused by a non‐synonymous amino acid exchange in encoded chloroplast DNA polymerase with a predicted deleterious effect. This coincided with lower cpDNA levels in pale green plants. Significance Statement We demonstrate a rapid mapping approach by combining the power of next‐generation sequencing of M2 individuals with Mendelian inheritance analysis to identify a recessive and a semi‐dominant mutation in two independent EMS mutagenized maize families.</description><subject>Amino acids</subject><subject>Chloroplast DNA</subject><subject>Chloroplasts</subject><subject>Corn</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>DNA-directed DNA polymerase</subject><subject>dwarf</subject><subject>EMS mutagenesis</subject><subject>Ethyl methanesulfonate</subject><subject>Gene sequencing</subject><subject>Genetic analysis</subject><subject>Genomes</subject><subject>Heredity</subject><subject>Insertion</subject><subject>Loci</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>mutation identification</subject><subject>Nucleotides</subject><subject>Offspring</subject><subject>pale green</subject><subject>Phenotypes</subject><subject>Pollen</subject><subject>Progeny</subject><subject>Single-nucleotide polymorphism</subject><subject>Technical Advance</subject><subject>Zea mays</subject><subject>Zygosity</subject><subject>zygosity filter</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpVUU1v1DAQtRAVXRYO_ANLnNNm7MRJLkhoxaeKyqFI3CzHnixebexgOwvLqT-hN_5ffwne3Qqpc5mR35snz3uEvILyAnJdpmlzAVXF4QlZABd1wYF_f0oWZSfKoqmAnZPnMW7KEhouqmfknAOIjnO-IH9Xfuyts25NHf5O97d3a3QYVLLe0Yg_Z3T6ACpn6BR8Bvc0YUyHt8EHGtRkDbUGXbKD1ac9P1DrzKzR0IAaY7Q7PCoYP1qnXKLjnI7UmIl0VPYP0i_ssGR31sxqG1-QsyE3fPnQl-Tb-3c3q4_F1fWHT6u3V8XEBEDRQstLI_qBY6v6ptVGiBK47jvVY93gMGDL6l7pvu4A665HgIExBjrfb1jNl-TNSXea-xGNzncEtZVTsKMKe-mVlY8RZ3_Itd9J0XZdkz1cktcPAsFnt2KSGz8Hl_8sGYcq-9wJllmXJ9Yvu8X9f3ko5SFAmQOUxwDlzdfPx4H_A45GlQA</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Heuermann, Marc C.</creator><creator>Rosso, Mario G.</creator><creator>Mascher, Martin</creator><creator>Brandt, Ronny</creator><creator>Tschiersch, Henning</creator><creator>Altschmied, Lothar</creator><creator>Altmann, Thomas</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5520-5287</orcidid><orcidid>https://orcid.org/0000-0002-3759-360X</orcidid><orcidid>https://orcid.org/0000-0001-6373-6013</orcidid></search><sort><creationdate>201911</creationdate><title>Combining next‐generation sequencing and progeny testing for rapid identification of induced recessive and dominant mutations in maize M2 individuals</title><author>Heuermann, Marc C. ; Rosso, Mario G. ; Mascher, Martin ; Brandt, Ronny ; Tschiersch, Henning ; Altschmied, Lothar ; Altmann, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2611-81830d6bf3e8ab78cd66013cb9abe57effe825bacb591e59be11f2221c693d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Chloroplast DNA</topic><topic>Chloroplasts</topic><topic>Corn</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>DNA-directed DNA polymerase</topic><topic>dwarf</topic><topic>EMS mutagenesis</topic><topic>Ethyl methanesulfonate</topic><topic>Gene sequencing</topic><topic>Genetic analysis</topic><topic>Genomes</topic><topic>Heredity</topic><topic>Insertion</topic><topic>Loci</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>mutation identification</topic><topic>Nucleotides</topic><topic>Offspring</topic><topic>pale green</topic><topic>Phenotypes</topic><topic>Pollen</topic><topic>Progeny</topic><topic>Single-nucleotide polymorphism</topic><topic>Technical Advance</topic><topic>Zea mays</topic><topic>Zygosity</topic><topic>zygosity filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heuermann, Marc C.</creatorcontrib><creatorcontrib>Rosso, Mario G.</creatorcontrib><creatorcontrib>Mascher, Martin</creatorcontrib><creatorcontrib>Brandt, Ronny</creatorcontrib><creatorcontrib>Tschiersch, Henning</creatorcontrib><creatorcontrib>Altschmied, Lothar</creatorcontrib><creatorcontrib>Altmann, Thomas</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heuermann, Marc C.</au><au>Rosso, Mario G.</au><au>Mascher, Martin</au><au>Brandt, Ronny</au><au>Tschiersch, Henning</au><au>Altschmied, Lothar</au><au>Altmann, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining next‐generation sequencing and progeny testing for rapid identification of induced recessive and dominant mutations in maize M2 individuals</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><date>2019-11</date><risdate>2019</risdate><volume>100</volume><issue>4</issue><spage>851</spage><epage>862</epage><pages>851-862</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Molecular identification of mutant alleles responsible for certain phenotypic alterations is a central goal of genetic analyses. In this study we describe a rapid procedure suitable for the identification of induced recessive and dominant mutations applied to two Zea mays mutants expressing a dwarf and a pale green phenotype, respectively, which were obtained through pollen ethyl methanesulfonate (EMS) mutagenesis. First, without prior backcrossing, induced mutations (single nucleotide polymorphisms, SNPs) segregating in a (M2) family derived from a heterozygous (M1) parent were identified using whole‐genome shotgun (WGS) sequencing of a small number of (M2) individuals with mutant and wild‐type phenotypes. Second, the state of zygosity of the mutation causing the phenotype was determined for each sequenced individual by phenotypic segregation analysis of the self‐pollinated (M3) offspring. Finally, we filtered for segregating EMS‐induced SNPs whose state of zygosity matched the determined state of zygosity of the mutant locus in each sequenced (M2) individuals. Through this procedure, combining sequencing of individuals and Mendelian inheritance, three and four SNPs in linkage passed our zygosity filter for the homozygous dwarf and heterozygous pale green mutation, respectively. The dwarf mutation was found to be allelic to the an1 locus and caused by an insertion in the largest exon of the AN1 gene. The pale green mutation affected the nuclear W2 gene and was caused by a non‐synonymous amino acid exchange in encoded chloroplast DNA polymerase with a predicted deleterious effect. This coincided with lower cpDNA levels in pale green plants. Significance Statement We demonstrate a rapid mapping approach by combining the power of next‐generation sequencing of M2 individuals with Mendelian inheritance analysis to identify a recessive and a semi‐dominant mutation in two independent EMS mutagenized maize families.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>31169333</pmid><doi>10.1111/tpj.14431</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5520-5287</orcidid><orcidid>https://orcid.org/0000-0002-3759-360X</orcidid><orcidid>https://orcid.org/0000-0001-6373-6013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2019-11, Vol.100 (4), p.851-862
issn 0960-7412
1365-313X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6899793
source Wiley Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Amino acids
Chloroplast DNA
Chloroplasts
Corn
Deoxyribonucleic acid
DNA
DNA polymerase
DNA-directed DNA polymerase
dwarf
EMS mutagenesis
Ethyl methanesulfonate
Gene sequencing
Genetic analysis
Genomes
Heredity
Insertion
Loci
Mutagenesis
Mutants
Mutation
mutation identification
Nucleotides
Offspring
pale green
Phenotypes
Pollen
Progeny
Single-nucleotide polymorphism
Technical Advance
Zea mays
Zygosity
zygosity filter
title Combining next‐generation sequencing and progeny testing for rapid identification of induced recessive and dominant mutations in maize M2 individuals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20next%E2%80%90generation%20sequencing%20and%20progeny%20testing%20for%20rapid%20identification%20of%20induced%20recessive%20and%20dominant%20mutations%20in%20maize%20M2%20individuals&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Heuermann,%20Marc%20C.&rft.date=2019-11&rft.volume=100&rft.issue=4&rft.spage=851&rft.epage=862&rft.pages=851-862&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.14431&rft_dat=%3Cproquest_pubme%3E2314169962%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314169962&rft_id=info:pmid/31169333&rfr_iscdi=true