Beer's Law‐Why Integrated Absorbance Depends Linearly on Concentration

As derived by Max Planck in 1903 from dispersion theory, Beer's law has a fundamental limitation. The concentration dependence of absorbance can deviate from linearity, even in the absence of any interactions or instrumental nonlinearities. Integrated absorbance, not peak absorbance, depends li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2019-11, Vol.20 (21), p.2748-2753
Hauptverfasser: Mayerhöfer, Thomas G., Pipa, Andrei V., Popp, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2753
container_issue 21
container_start_page 2748
container_title Chemphyschem
container_volume 20
creator Mayerhöfer, Thomas G.
Pipa, Andrei V.
Popp, Jürgen
description As derived by Max Planck in 1903 from dispersion theory, Beer's law has a fundamental limitation. The concentration dependence of absorbance can deviate from linearity, even in the absence of any interactions or instrumental nonlinearities. Integrated absorbance, not peak absorbance, depends linearly on concentration. The numerical integration of the absorbance leads to maximum deviations from linearity of less than 0.1 %. This deviation is a consequence of a sum rule that was derived from the Kramers‐Kronig relations at a time when the fundamental limitation of Beer's law was no longer mentioned in the literature. This sum rule also links concentration to (classical) oscillator strengths and thereby enables the use of dispersion analysis to determine the concentration directly from transmittance and reflectance measurements. Thus, concentration analysis of complex samples, such as layered and/or anisotropic materials, in which Beer's law cannot be applied, can be achieved using dispersion analysis. Absorbance at a particular spectral point does not necessarily depend linearly on the concentration. Based on electromagnetic theory, it can be demonstrated, however, that for the integrated absorbance, Beer's law still holds.
doi_str_mv 10.1002/cphc.201900787
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6899465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312264890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5057-6df64685f134416146aa33a92cbe04fbdd771c06b534a8396909a3e43279deb33</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EglJYGVEkBlha_BUnXpBK-ChSJRhAjJaTXGiq1C52S9WNn8Bv5Jdg1FI-FqY76Z57dKcXoQOCuwRjelpMhkWXYiIxTtJkA7UIZ7KTCE42Vz2nLN5Bu96PMMYpTsg22mEk5lxK2UL9cwB37KOBnr-_vj0OF9GNmcKT01Moo17urcu1KSC6gAmYMnC1Ae2aRWRNlNkwMdPA1tbsoa1KNx72V7WNHq4u77N-Z3B7fZP1Bp0ixnHSEWUluEjjijDOiSBcaM2YlrTIAfMqL8skIQUWecy4TpkUEkvNgDOayBJyxtrobOmdzPIxlMsDGjVx9Vi7hbK6Vr8nph6qJ_uiRColF3EQnKwEzj7PwE_VuPYFNI02YGdeUSoFoTGlJKBHf9CRnTkT3lOUEUoFTyUOVHdJFc5676BaH0Ow-gxJfYak1iGFhcOfL6zxr1QCIJfAvG5g8Y9OZXf97Fv-ASehnoE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312264890</pqid></control><display><type>article</type><title>Beer's Law‐Why Integrated Absorbance Depends Linearly on Concentration</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mayerhöfer, Thomas G. ; Pipa, Andrei V. ; Popp, Jürgen</creator><creatorcontrib>Mayerhöfer, Thomas G. ; Pipa, Andrei V. ; Popp, Jürgen</creatorcontrib><description>As derived by Max Planck in 1903 from dispersion theory, Beer's law has a fundamental limitation. The concentration dependence of absorbance can deviate from linearity, even in the absence of any interactions or instrumental nonlinearities. Integrated absorbance, not peak absorbance, depends linearly on concentration. The numerical integration of the absorbance leads to maximum deviations from linearity of less than 0.1 %. This deviation is a consequence of a sum rule that was derived from the Kramers‐Kronig relations at a time when the fundamental limitation of Beer's law was no longer mentioned in the literature. This sum rule also links concentration to (classical) oscillator strengths and thereby enables the use of dispersion analysis to determine the concentration directly from transmittance and reflectance measurements. Thus, concentration analysis of complex samples, such as layered and/or anisotropic materials, in which Beer's law cannot be applied, can be achieved using dispersion analysis. Absorbance at a particular spectral point does not necessarily depend linearly on the concentration. Based on electromagnetic theory, it can be demonstrated, however, that for the integrated absorbance, Beer's law still holds.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201900787</identifier><identifier>PMID: 31544999</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorbance ; Beer's law ; Communication ; Communications ; concentration dependence ; Dependence ; Dispersion ; dispersion analysis ; isotropic media ; Linearity ; Numerical integration ; Oscillator strengths ; Reflectance ; Sum rules</subject><ispartof>Chemphyschem, 2019-11, Vol.20 (21), p.2748-2753</ispartof><rights>2019 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5057-6df64685f134416146aa33a92cbe04fbdd771c06b534a8396909a3e43279deb33</citedby><cites>FETCH-LOGICAL-c5057-6df64685f134416146aa33a92cbe04fbdd771c06b534a8396909a3e43279deb33</cites><orcidid>0000-0001-9396-7365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201900787$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201900787$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31544999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayerhöfer, Thomas G.</creatorcontrib><creatorcontrib>Pipa, Andrei V.</creatorcontrib><creatorcontrib>Popp, Jürgen</creatorcontrib><title>Beer's Law‐Why Integrated Absorbance Depends Linearly on Concentration</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>As derived by Max Planck in 1903 from dispersion theory, Beer's law has a fundamental limitation. The concentration dependence of absorbance can deviate from linearity, even in the absence of any interactions or instrumental nonlinearities. Integrated absorbance, not peak absorbance, depends linearly on concentration. The numerical integration of the absorbance leads to maximum deviations from linearity of less than 0.1 %. This deviation is a consequence of a sum rule that was derived from the Kramers‐Kronig relations at a time when the fundamental limitation of Beer's law was no longer mentioned in the literature. This sum rule also links concentration to (classical) oscillator strengths and thereby enables the use of dispersion analysis to determine the concentration directly from transmittance and reflectance measurements. Thus, concentration analysis of complex samples, such as layered and/or anisotropic materials, in which Beer's law cannot be applied, can be achieved using dispersion analysis. Absorbance at a particular spectral point does not necessarily depend linearly on the concentration. Based on electromagnetic theory, it can be demonstrated, however, that for the integrated absorbance, Beer's law still holds.</description><subject>Absorbance</subject><subject>Beer's law</subject><subject>Communication</subject><subject>Communications</subject><subject>concentration dependence</subject><subject>Dependence</subject><subject>Dispersion</subject><subject>dispersion analysis</subject><subject>isotropic media</subject><subject>Linearity</subject><subject>Numerical integration</subject><subject>Oscillator strengths</subject><subject>Reflectance</subject><subject>Sum rules</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkT1PwzAQhi0EglJYGVEkBlha_BUnXpBK-ChSJRhAjJaTXGiq1C52S9WNn8Bv5Jdg1FI-FqY76Z57dKcXoQOCuwRjelpMhkWXYiIxTtJkA7UIZ7KTCE42Vz2nLN5Bu96PMMYpTsg22mEk5lxK2UL9cwB37KOBnr-_vj0OF9GNmcKT01Moo17urcu1KSC6gAmYMnC1Ae2aRWRNlNkwMdPA1tbsoa1KNx72V7WNHq4u77N-Z3B7fZP1Bp0ixnHSEWUluEjjijDOiSBcaM2YlrTIAfMqL8skIQUWecy4TpkUEkvNgDOayBJyxtrobOmdzPIxlMsDGjVx9Vi7hbK6Vr8nph6qJ_uiRColF3EQnKwEzj7PwE_VuPYFNI02YGdeUSoFoTGlJKBHf9CRnTkT3lOUEUoFTyUOVHdJFc5676BaH0Ow-gxJfYak1iGFhcOfL6zxr1QCIJfAvG5g8Y9OZXf97Fv-ASehnoE</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>Mayerhöfer, Thomas G.</creator><creator>Pipa, Andrei V.</creator><creator>Popp, Jürgen</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9396-7365</orcidid></search><sort><creationdate>20191105</creationdate><title>Beer's Law‐Why Integrated Absorbance Depends Linearly on Concentration</title><author>Mayerhöfer, Thomas G. ; Pipa, Andrei V. ; Popp, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5057-6df64685f134416146aa33a92cbe04fbdd771c06b534a8396909a3e43279deb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbance</topic><topic>Beer's law</topic><topic>Communication</topic><topic>Communications</topic><topic>concentration dependence</topic><topic>Dependence</topic><topic>Dispersion</topic><topic>dispersion analysis</topic><topic>isotropic media</topic><topic>Linearity</topic><topic>Numerical integration</topic><topic>Oscillator strengths</topic><topic>Reflectance</topic><topic>Sum rules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayerhöfer, Thomas G.</creatorcontrib><creatorcontrib>Pipa, Andrei V.</creatorcontrib><creatorcontrib>Popp, Jürgen</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayerhöfer, Thomas G.</au><au>Pipa, Andrei V.</au><au>Popp, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beer's Law‐Why Integrated Absorbance Depends Linearly on Concentration</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2019-11-05</date><risdate>2019</risdate><volume>20</volume><issue>21</issue><spage>2748</spage><epage>2753</epage><pages>2748-2753</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>As derived by Max Planck in 1903 from dispersion theory, Beer's law has a fundamental limitation. The concentration dependence of absorbance can deviate from linearity, even in the absence of any interactions or instrumental nonlinearities. Integrated absorbance, not peak absorbance, depends linearly on concentration. The numerical integration of the absorbance leads to maximum deviations from linearity of less than 0.1 %. This deviation is a consequence of a sum rule that was derived from the Kramers‐Kronig relations at a time when the fundamental limitation of Beer's law was no longer mentioned in the literature. This sum rule also links concentration to (classical) oscillator strengths and thereby enables the use of dispersion analysis to determine the concentration directly from transmittance and reflectance measurements. Thus, concentration analysis of complex samples, such as layered and/or anisotropic materials, in which Beer's law cannot be applied, can be achieved using dispersion analysis. Absorbance at a particular spectral point does not necessarily depend linearly on the concentration. Based on electromagnetic theory, it can be demonstrated, however, that for the integrated absorbance, Beer's law still holds.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31544999</pmid><doi>10.1002/cphc.201900787</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9396-7365</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2019-11, Vol.20 (21), p.2748-2753
issn 1439-4235
1439-7641
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6899465
source Wiley Online Library Journals Frontfile Complete
subjects Absorbance
Beer's law
Communication
Communications
concentration dependence
Dependence
Dispersion
dispersion analysis
isotropic media
Linearity
Numerical integration
Oscillator strengths
Reflectance
Sum rules
title Beer's Law‐Why Integrated Absorbance Depends Linearly on Concentration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beer's%20Law%E2%80%90Why%20Integrated%20Absorbance%20Depends%20Linearly%20on%20Concentration&rft.jtitle=Chemphyschem&rft.au=Mayerh%C3%B6fer,%20Thomas%20G.&rft.date=2019-11-05&rft.volume=20&rft.issue=21&rft.spage=2748&rft.epage=2753&rft.pages=2748-2753&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201900787&rft_dat=%3Cproquest_pubme%3E2312264890%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312264890&rft_id=info:pmid/31544999&rfr_iscdi=true