DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract
Purpose Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants. Methods A large database of clinical exome sequencing (ES) wa...
Gespeichert in:
Veröffentlicht in: | Genetics in medicine 2019-12, Vol.21 (12), p.2755-2764 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2764 |
---|---|
container_issue | 12 |
container_start_page | 2755 |
container_title | Genetics in medicine |
container_volume | 21 |
creator | Blackburn, Alexandria T. M. Bekheirnia, Nasim Uma, Vanessa C. Corkins, Mark E. Xu, Yuxiao Rosenfeld, Jill A. Bainbridge, Matthew N. Yang, Yaping Liu, Pengfei Madan-Khetarpal, Suneeta Delgado, Mauricio R. Hudgins, Louanne Krantz, Ian Rodriguez-Buritica, David Wheeler, Patricia G. Al-Gazali, Lihadh Mohamed Saeed Mohamed Al Shamsi, Aisha Gomez-Ospina, Natalia Chao, Hsiao-Tuan Mirzaa, Ghayda M. Scheuerle, Angela E. Kukolich, Mary K. Scaglia, Fernando Eng, Christine Willsey, Helen Rankin Braun, Michael C. Lamb, Dolores J. Miller, Rachel K. Bekheirnia, Mir Reza |
description | Purpose
Haploinsufficiency of
DYRK1A
causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with
DYRK1A
variants.
Methods
A large database of clinical exome sequencing (ES) was queried for de novo
DYRK1A
variants and CAKUT/GD phenotypes were characterized.
Xenopus laevis
(frog) was chosen as a model organism to assess Dyrk1a’s role in renal development.
Results
Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in
DYRK1A
had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in
Xenopus
embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human
DYRK1A
RNA, but not with
DYRK1A
R205*
or
DYRK1A
L245R
RNA.
Conclusion
Evidence supports routine GU screening of all individuals with de novo
DYRK1A
pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in
Xenopus
substantiate a novel role for
DYRK1A
in GU development. |
doi_str_mv | 10.1038/s41436-019-0576-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6895419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321683651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-f372c5b7b8c3c4b3dea30aa7ca23f33473391925aa775d80a4e0d0cd322a90af3</originalsourceid><addsrcrecordid>eNp1kctu1TAQhiMEoqXwAGyQJTZsAmNPEicskKqWm6iEhGDByprYTo9LYhfbaXXeHh9OKReJlUeeb_65_FX1mMNzDti_SA1vsKuBDzW0sgR3qkPeItSAXXe3xDD0NXYAB9WDlC4AuEQB96sD5KJDwdvD6vr066cP_LiOdqZsDXM-23m2Oq80M-MSjW52efuSEUtbb2JYLKOUgnY_8WuXN0wHf269y6WCfFhodjaxMLG8seybM95uy79ha3Se4pblSDo_rO5NNCf76OY9qr68ef355F199vHt-5Pjs1o3EnI9oRS6HeXYa9TNiMYSApHUJHBCbCTiwAfRli_Zmh6osWBAGxSCBqAJj6pXe93LdVys0daX9rO6jG4ps6hATv2d8W6jzsOV6vqhbfhQBJ7dCMTwfbUpq8UlXW5E3oY1KSFazkHKAQr69B_0IqzRl_WUKNfueuxaXii-p3QMKUU73Q7DQe1sVXtbVbFV7WxVO-Unf25xW_HLxwKIPZBKqrgRf7f-v-oPnyOvnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321683651</pqid></control><display><type>article</type><title>DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Blackburn, Alexandria T. M. ; Bekheirnia, Nasim ; Uma, Vanessa C. ; Corkins, Mark E. ; Xu, Yuxiao ; Rosenfeld, Jill A. ; Bainbridge, Matthew N. ; Yang, Yaping ; Liu, Pengfei ; Madan-Khetarpal, Suneeta ; Delgado, Mauricio R. ; Hudgins, Louanne ; Krantz, Ian ; Rodriguez-Buritica, David ; Wheeler, Patricia G. ; Al-Gazali, Lihadh ; Mohamed Saeed Mohamed Al Shamsi, Aisha ; Gomez-Ospina, Natalia ; Chao, Hsiao-Tuan ; Mirzaa, Ghayda M. ; Scheuerle, Angela E. ; Kukolich, Mary K. ; Scaglia, Fernando ; Eng, Christine ; Willsey, Helen Rankin ; Braun, Michael C. ; Lamb, Dolores J. ; Miller, Rachel K. ; Bekheirnia, Mir Reza</creator><creatorcontrib>Blackburn, Alexandria T. M. ; Bekheirnia, Nasim ; Uma, Vanessa C. ; Corkins, Mark E. ; Xu, Yuxiao ; Rosenfeld, Jill A. ; Bainbridge, Matthew N. ; Yang, Yaping ; Liu, Pengfei ; Madan-Khetarpal, Suneeta ; Delgado, Mauricio R. ; Hudgins, Louanne ; Krantz, Ian ; Rodriguez-Buritica, David ; Wheeler, Patricia G. ; Al-Gazali, Lihadh ; Mohamed Saeed Mohamed Al Shamsi, Aisha ; Gomez-Ospina, Natalia ; Chao, Hsiao-Tuan ; Mirzaa, Ghayda M. ; Scheuerle, Angela E. ; Kukolich, Mary K. ; Scaglia, Fernando ; Eng, Christine ; Willsey, Helen Rankin ; Braun, Michael C. ; Lamb, Dolores J. ; Miller, Rachel K. ; Bekheirnia, Mir Reza</creatorcontrib><description>Purpose
Haploinsufficiency of
DYRK1A
causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with
DYRK1A
variants.
Methods
A large database of clinical exome sequencing (ES) was queried for de novo
DYRK1A
variants and CAKUT/GD phenotypes were characterized.
Xenopus laevis
(frog) was chosen as a model organism to assess Dyrk1a’s role in renal development.
Results
Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in
DYRK1A
had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in
Xenopus
embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human
DYRK1A
RNA, but not with
DYRK1A
R205*
or
DYRK1A
L245R
RNA.
Conclusion
Evidence supports routine GU screening of all individuals with de novo
DYRK1A
pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in
Xenopus
substantiate a novel role for
DYRK1A
in GU development.</description><identifier>ISSN: 1098-3600</identifier><identifier>ISSN: 1530-0366</identifier><identifier>EISSN: 1530-0366</identifier><identifier>DOI: 10.1038/s41436-019-0576-0</identifier><identifier>PMID: 31263215</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adolescent ; Adult ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Child ; Child, Preschool ; Databases, Genetic ; Disease Models, Animal ; Dyrk Kinases ; Exome - genetics ; Exome Sequencing - methods ; Female ; Haploinsufficiency - genetics ; Human Genetics ; Humans ; Intellectual Disability - complications ; Intellectual Disability - genetics ; Kidney - abnormalities ; Kidney - embryology ; Laboratory Medicine ; Male ; Nephrons - metabolism ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Protein-Tyrosine Kinases - genetics ; Protein-Tyrosine Kinases - metabolism ; Urinary Tract - embryology ; Urinary Tract - metabolism ; Urogenital Abnormalities - genetics ; Urogenital system ; Xenopus laevis - genetics ; Xenopus laevis - metabolism ; Young Adult</subject><ispartof>Genetics in medicine, 2019-12, Vol.21 (12), p.2755-2764</ispartof><rights>American College of Medical Genetics and Genomics 2019</rights><rights>Copyright Nature Publishing Group Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-f372c5b7b8c3c4b3dea30aa7ca23f33473391925aa775d80a4e0d0cd322a90af3</citedby><cites>FETCH-LOGICAL-c470t-f372c5b7b8c3c4b3dea30aa7ca23f33473391925aa775d80a4e0d0cd322a90af3</cites><orcidid>0000-0001-6381-7198 ; 0000-0003-2974-0339 ; 0000-0002-0802-845X ; 0000-0002-2854-5470 ; 0000-0002-4177-709X ; 0000-0002-4389-5065 ; 0000-0002-2889-4558 ; 0000-0001-8261-6025 ; 0000-0002-6740-1154 ; 0000-0001-5664-7987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2321683651?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31263215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blackburn, Alexandria T. M.</creatorcontrib><creatorcontrib>Bekheirnia, Nasim</creatorcontrib><creatorcontrib>Uma, Vanessa C.</creatorcontrib><creatorcontrib>Corkins, Mark E.</creatorcontrib><creatorcontrib>Xu, Yuxiao</creatorcontrib><creatorcontrib>Rosenfeld, Jill A.</creatorcontrib><creatorcontrib>Bainbridge, Matthew N.</creatorcontrib><creatorcontrib>Yang, Yaping</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Madan-Khetarpal, Suneeta</creatorcontrib><creatorcontrib>Delgado, Mauricio R.</creatorcontrib><creatorcontrib>Hudgins, Louanne</creatorcontrib><creatorcontrib>Krantz, Ian</creatorcontrib><creatorcontrib>Rodriguez-Buritica, David</creatorcontrib><creatorcontrib>Wheeler, Patricia G.</creatorcontrib><creatorcontrib>Al-Gazali, Lihadh</creatorcontrib><creatorcontrib>Mohamed Saeed Mohamed Al Shamsi, Aisha</creatorcontrib><creatorcontrib>Gomez-Ospina, Natalia</creatorcontrib><creatorcontrib>Chao, Hsiao-Tuan</creatorcontrib><creatorcontrib>Mirzaa, Ghayda M.</creatorcontrib><creatorcontrib>Scheuerle, Angela E.</creatorcontrib><creatorcontrib>Kukolich, Mary K.</creatorcontrib><creatorcontrib>Scaglia, Fernando</creatorcontrib><creatorcontrib>Eng, Christine</creatorcontrib><creatorcontrib>Willsey, Helen Rankin</creatorcontrib><creatorcontrib>Braun, Michael C.</creatorcontrib><creatorcontrib>Lamb, Dolores J.</creatorcontrib><creatorcontrib>Miller, Rachel K.</creatorcontrib><creatorcontrib>Bekheirnia, Mir Reza</creatorcontrib><title>DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract</title><title>Genetics in medicine</title><addtitle>Genet Med</addtitle><addtitle>Genet Med</addtitle><description>Purpose
Haploinsufficiency of
DYRK1A
causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with
DYRK1A
variants.
Methods
A large database of clinical exome sequencing (ES) was queried for de novo
DYRK1A
variants and CAKUT/GD phenotypes were characterized.
Xenopus laevis
(frog) was chosen as a model organism to assess Dyrk1a’s role in renal development.
Results
Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in
DYRK1A
had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in
Xenopus
embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human
DYRK1A
RNA, but not with
DYRK1A
R205*
or
DYRK1A
L245R
RNA.
Conclusion
Evidence supports routine GU screening of all individuals with de novo
DYRK1A
pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in
Xenopus
substantiate a novel role for
DYRK1A
in GU development.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Databases, Genetic</subject><subject>Disease Models, Animal</subject><subject>Dyrk Kinases</subject><subject>Exome - genetics</subject><subject>Exome Sequencing - methods</subject><subject>Female</subject><subject>Haploinsufficiency - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Intellectual Disability - complications</subject><subject>Intellectual Disability - genetics</subject><subject>Kidney - abnormalities</subject><subject>Kidney - embryology</subject><subject>Laboratory Medicine</subject><subject>Male</subject><subject>Nephrons - metabolism</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Urinary Tract - embryology</subject><subject>Urinary Tract - metabolism</subject><subject>Urogenital Abnormalities - genetics</subject><subject>Urogenital system</subject><subject>Xenopus laevis - genetics</subject><subject>Xenopus laevis - metabolism</subject><subject>Young Adult</subject><issn>1098-3600</issn><issn>1530-0366</issn><issn>1530-0366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kctu1TAQhiMEoqXwAGyQJTZsAmNPEicskKqWm6iEhGDByprYTo9LYhfbaXXeHh9OKReJlUeeb_65_FX1mMNzDti_SA1vsKuBDzW0sgR3qkPeItSAXXe3xDD0NXYAB9WDlC4AuEQB96sD5KJDwdvD6vr066cP_LiOdqZsDXM-23m2Oq80M-MSjW52efuSEUtbb2JYLKOUgnY_8WuXN0wHf269y6WCfFhodjaxMLG8seybM95uy79ha3Se4pblSDo_rO5NNCf76OY9qr68ef355F199vHt-5Pjs1o3EnI9oRS6HeXYa9TNiMYSApHUJHBCbCTiwAfRli_Zmh6osWBAGxSCBqAJj6pXe93LdVys0daX9rO6jG4ps6hATv2d8W6jzsOV6vqhbfhQBJ7dCMTwfbUpq8UlXW5E3oY1KSFazkHKAQr69B_0IqzRl_WUKNfueuxaXii-p3QMKUU73Q7DQe1sVXtbVbFV7WxVO-Unf25xW_HLxwKIPZBKqrgRf7f-v-oPnyOvnQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Blackburn, Alexandria T. M.</creator><creator>Bekheirnia, Nasim</creator><creator>Uma, Vanessa C.</creator><creator>Corkins, Mark E.</creator><creator>Xu, Yuxiao</creator><creator>Rosenfeld, Jill A.</creator><creator>Bainbridge, Matthew N.</creator><creator>Yang, Yaping</creator><creator>Liu, Pengfei</creator><creator>Madan-Khetarpal, Suneeta</creator><creator>Delgado, Mauricio R.</creator><creator>Hudgins, Louanne</creator><creator>Krantz, Ian</creator><creator>Rodriguez-Buritica, David</creator><creator>Wheeler, Patricia G.</creator><creator>Al-Gazali, Lihadh</creator><creator>Mohamed Saeed Mohamed Al Shamsi, Aisha</creator><creator>Gomez-Ospina, Natalia</creator><creator>Chao, Hsiao-Tuan</creator><creator>Mirzaa, Ghayda M.</creator><creator>Scheuerle, Angela E.</creator><creator>Kukolich, Mary K.</creator><creator>Scaglia, Fernando</creator><creator>Eng, Christine</creator><creator>Willsey, Helen Rankin</creator><creator>Braun, Michael C.</creator><creator>Lamb, Dolores J.</creator><creator>Miller, Rachel K.</creator><creator>Bekheirnia, Mir Reza</creator><general>Nature Publishing Group US</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6381-7198</orcidid><orcidid>https://orcid.org/0000-0003-2974-0339</orcidid><orcidid>https://orcid.org/0000-0002-0802-845X</orcidid><orcidid>https://orcid.org/0000-0002-2854-5470</orcidid><orcidid>https://orcid.org/0000-0002-4177-709X</orcidid><orcidid>https://orcid.org/0000-0002-4389-5065</orcidid><orcidid>https://orcid.org/0000-0002-2889-4558</orcidid><orcidid>https://orcid.org/0000-0001-8261-6025</orcidid><orcidid>https://orcid.org/0000-0002-6740-1154</orcidid><orcidid>https://orcid.org/0000-0001-5664-7987</orcidid></search><sort><creationdate>20191201</creationdate><title>DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract</title><author>Blackburn, Alexandria T. M. ; Bekheirnia, Nasim ; Uma, Vanessa C. ; Corkins, Mark E. ; Xu, Yuxiao ; Rosenfeld, Jill A. ; Bainbridge, Matthew N. ; Yang, Yaping ; Liu, Pengfei ; Madan-Khetarpal, Suneeta ; Delgado, Mauricio R. ; Hudgins, Louanne ; Krantz, Ian ; Rodriguez-Buritica, David ; Wheeler, Patricia G. ; Al-Gazali, Lihadh ; Mohamed Saeed Mohamed Al Shamsi, Aisha ; Gomez-Ospina, Natalia ; Chao, Hsiao-Tuan ; Mirzaa, Ghayda M. ; Scheuerle, Angela E. ; Kukolich, Mary K. ; Scaglia, Fernando ; Eng, Christine ; Willsey, Helen Rankin ; Braun, Michael C. ; Lamb, Dolores J. ; Miller, Rachel K. ; Bekheirnia, Mir Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-f372c5b7b8c3c4b3dea30aa7ca23f33473391925aa775d80a4e0d0cd322a90af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Databases, Genetic</topic><topic>Disease Models, Animal</topic><topic>Dyrk Kinases</topic><topic>Exome - genetics</topic><topic>Exome Sequencing - methods</topic><topic>Female</topic><topic>Haploinsufficiency - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Intellectual Disability - complications</topic><topic>Intellectual Disability - genetics</topic><topic>Kidney - abnormalities</topic><topic>Kidney - embryology</topic><topic>Laboratory Medicine</topic><topic>Male</topic><topic>Nephrons - metabolism</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Urinary Tract - embryology</topic><topic>Urinary Tract - metabolism</topic><topic>Urogenital Abnormalities - genetics</topic><topic>Urogenital system</topic><topic>Xenopus laevis - genetics</topic><topic>Xenopus laevis - metabolism</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackburn, Alexandria T. M.</creatorcontrib><creatorcontrib>Bekheirnia, Nasim</creatorcontrib><creatorcontrib>Uma, Vanessa C.</creatorcontrib><creatorcontrib>Corkins, Mark E.</creatorcontrib><creatorcontrib>Xu, Yuxiao</creatorcontrib><creatorcontrib>Rosenfeld, Jill A.</creatorcontrib><creatorcontrib>Bainbridge, Matthew N.</creatorcontrib><creatorcontrib>Yang, Yaping</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Madan-Khetarpal, Suneeta</creatorcontrib><creatorcontrib>Delgado, Mauricio R.</creatorcontrib><creatorcontrib>Hudgins, Louanne</creatorcontrib><creatorcontrib>Krantz, Ian</creatorcontrib><creatorcontrib>Rodriguez-Buritica, David</creatorcontrib><creatorcontrib>Wheeler, Patricia G.</creatorcontrib><creatorcontrib>Al-Gazali, Lihadh</creatorcontrib><creatorcontrib>Mohamed Saeed Mohamed Al Shamsi, Aisha</creatorcontrib><creatorcontrib>Gomez-Ospina, Natalia</creatorcontrib><creatorcontrib>Chao, Hsiao-Tuan</creatorcontrib><creatorcontrib>Mirzaa, Ghayda M.</creatorcontrib><creatorcontrib>Scheuerle, Angela E.</creatorcontrib><creatorcontrib>Kukolich, Mary K.</creatorcontrib><creatorcontrib>Scaglia, Fernando</creatorcontrib><creatorcontrib>Eng, Christine</creatorcontrib><creatorcontrib>Willsey, Helen Rankin</creatorcontrib><creatorcontrib>Braun, Michael C.</creatorcontrib><creatorcontrib>Lamb, Dolores J.</creatorcontrib><creatorcontrib>Miller, Rachel K.</creatorcontrib><creatorcontrib>Bekheirnia, Mir Reza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackburn, Alexandria T. M.</au><au>Bekheirnia, Nasim</au><au>Uma, Vanessa C.</au><au>Corkins, Mark E.</au><au>Xu, Yuxiao</au><au>Rosenfeld, Jill A.</au><au>Bainbridge, Matthew N.</au><au>Yang, Yaping</au><au>Liu, Pengfei</au><au>Madan-Khetarpal, Suneeta</au><au>Delgado, Mauricio R.</au><au>Hudgins, Louanne</au><au>Krantz, Ian</au><au>Rodriguez-Buritica, David</au><au>Wheeler, Patricia G.</au><au>Al-Gazali, Lihadh</au><au>Mohamed Saeed Mohamed Al Shamsi, Aisha</au><au>Gomez-Ospina, Natalia</au><au>Chao, Hsiao-Tuan</au><au>Mirzaa, Ghayda M.</au><au>Scheuerle, Angela E.</au><au>Kukolich, Mary K.</au><au>Scaglia, Fernando</au><au>Eng, Christine</au><au>Willsey, Helen Rankin</au><au>Braun, Michael C.</au><au>Lamb, Dolores J.</au><au>Miller, Rachel K.</au><au>Bekheirnia, Mir Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract</atitle><jtitle>Genetics in medicine</jtitle><stitle>Genet Med</stitle><addtitle>Genet Med</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>21</volume><issue>12</issue><spage>2755</spage><epage>2764</epage><pages>2755-2764</pages><issn>1098-3600</issn><issn>1530-0366</issn><eissn>1530-0366</eissn><abstract>Purpose
Haploinsufficiency of
DYRK1A
causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with
DYRK1A
variants.
Methods
A large database of clinical exome sequencing (ES) was queried for de novo
DYRK1A
variants and CAKUT/GD phenotypes were characterized.
Xenopus laevis
(frog) was chosen as a model organism to assess Dyrk1a’s role in renal development.
Results
Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in
DYRK1A
had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in
Xenopus
embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human
DYRK1A
RNA, but not with
DYRK1A
R205*
or
DYRK1A
L245R
RNA.
Conclusion
Evidence supports routine GU screening of all individuals with de novo
DYRK1A
pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in
Xenopus
substantiate a novel role for
DYRK1A
in GU development.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31263215</pmid><doi>10.1038/s41436-019-0576-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6381-7198</orcidid><orcidid>https://orcid.org/0000-0003-2974-0339</orcidid><orcidid>https://orcid.org/0000-0002-0802-845X</orcidid><orcidid>https://orcid.org/0000-0002-2854-5470</orcidid><orcidid>https://orcid.org/0000-0002-4177-709X</orcidid><orcidid>https://orcid.org/0000-0002-4389-5065</orcidid><orcidid>https://orcid.org/0000-0002-2889-4558</orcidid><orcidid>https://orcid.org/0000-0001-8261-6025</orcidid><orcidid>https://orcid.org/0000-0002-6740-1154</orcidid><orcidid>https://orcid.org/0000-0001-5664-7987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-3600 |
ispartof | Genetics in medicine, 2019-12, Vol.21 (12), p.2755-2764 |
issn | 1098-3600 1530-0366 1530-0366 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6895419 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection |
subjects | Adolescent Adult Animals Biomedical and Life Sciences Biomedicine Child Child, Preschool Databases, Genetic Disease Models, Animal Dyrk Kinases Exome - genetics Exome Sequencing - methods Female Haploinsufficiency - genetics Human Genetics Humans Intellectual Disability - complications Intellectual Disability - genetics Kidney - abnormalities Kidney - embryology Laboratory Medicine Male Nephrons - metabolism Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Protein-Tyrosine Kinases - genetics Protein-Tyrosine Kinases - metabolism Urinary Tract - embryology Urinary Tract - metabolism Urogenital Abnormalities - genetics Urogenital system Xenopus laevis - genetics Xenopus laevis - metabolism Young Adult |
title | DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DYRK1A-related%20intellectual%20disability:%20a%20syndrome%20associated%20with%20congenital%20anomalies%20of%20the%20kidney%20and%20urinary%20tract&rft.jtitle=Genetics%20in%20medicine&rft.au=Blackburn,%20Alexandria%20T.%20M.&rft.date=2019-12-01&rft.volume=21&rft.issue=12&rft.spage=2755&rft.epage=2764&rft.pages=2755-2764&rft.issn=1098-3600&rft.eissn=1530-0366&rft_id=info:doi/10.1038/s41436-019-0576-0&rft_dat=%3Cproquest_pubme%3E2321683651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321683651&rft_id=info:pmid/31263215&rfr_iscdi=true |