Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study

This study evaluated the predictive ability of 11 obesity- and lipid-related parameters, including body mass index (BMI), waist circumference (WC), waist-to-height ratio (WtHR), body roundness index (BRI), "A" body-shape index (ABSI), conicity index (CI), visceral adiposity index (VAI), tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2019-11, Vol.11 (11), p.2654
Hauptverfasser: Ramírez-Vélez, Robinson, Pérez-Sousa, Miguel Ángel, González-Ruíz, Katherine, Cano-Gutierrez, Carlos A, Schmidt-RioValle, Jacqueline, Correa-Rodríguez, María, Izquierdo, Mikel, Romero-García, Jesús Astolfo, Campos-Rodríguez, Adriana Yolanda, Triana-Reina, Héctor Reynaldo, González-Jiménez, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2654
container_title Nutrients
container_volume 11
creator Ramírez-Vélez, Robinson
Pérez-Sousa, Miguel Ángel
González-Ruíz, Katherine
Cano-Gutierrez, Carlos A
Schmidt-RioValle, Jacqueline
Correa-Rodríguez, María
Izquierdo, Mikel
Romero-García, Jesús Astolfo
Campos-Rodríguez, Adriana Yolanda
Triana-Reina, Héctor Reynaldo
González-Jiménez, Emilio
description This study evaluated the predictive ability of 11 obesity- and lipid-related parameters, including body mass index (BMI), waist circumference (WC), waist-to-height ratio (WtHR), body roundness index (BRI), "A" body-shape index (ABSI), conicity index (CI), visceral adiposity index (VAI), triglyceride-to-glucose fasting index (TyG), triglyceride-to-glucose fasting related to BMI (TyG-BMI), triglyceride-to-glucose fasting related to WC (TyG-WC), and triglyceride-to-glucose fasting related to WtHR (TyG-WtHR), to identify patients from an elderly Colombian population with a high risk of prediabetes according to the 2016 American Diabetes Association criteria. The data were obtained from the 2015 Colombian Health and Wellbeing and Aging Survey. A total of 3307 elderly Colombian individuals (aged over 60 years) were included. Anthropometric data, fasting plasma glucose, blood lipid profiles, family history, and health-related behaviors were assessed, and prediabetes was defined as a fasting plasma glucose of 100 to 125 mg/dL. The areas under the receiver operating characteristic (ROC) curves (AUCs) were calculated for each anthropometric indicator, using the prediabetes classification to identify their sensitivity and specificity, and these indicated that the prevalence of prediabetes was 25.3% in this population. After adjusting for potential confounding factors, the TyG index was strongly associated with the odds of having prediabetes in both sexes, and multivariate logistic regression analysis showed that the ORs for prediabetes increased across quartiles ( < 0.001). The TyG index was best able to identify prediabetes in either sex (AUC and optimal cut-off = 0.700 and 8.72, and 0.695 and 8.92 for men and women, respectively), suggesting that compared to the other parameters, the TyG index has the best discriminative power to predict prediabetes in the whole population. Thus, we propose the TyG index be used as a complementary marker for assessing prediabetes in older adults.
doi_str_mv 10.3390/nu11112654
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6893527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400479317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-6dffc58785c22a9762f45d3a0feb88bfcc381098b3571bd51b95f1757e1df7893</originalsourceid><addsrcrecordid>eNqNkltrFDEUgAdRbKl98QdIwBeRjuYymUx8EMZ62cLClqr4OGRy2UmdTdYko-wv9e-Y2da1-uQhkEC-fJxzcoriMYIvCOHwpZtQDlzT6l5xjCHDZV1X5P6d81FxGuM1nINBVpOHxRFBdcM5Y8fFz1Wvo027EginwNJurSqv9CiSVuBSBLHRSYcIrANp0OBCaZessVIk6x3wBqxGpQNo1TSmCH7YNAABFnY9gCsbv87AZdDKij5rImil9EFZtwbJ733tRocsc-DtAYnRS7vXvwKty0uMu2jjrJpfYIgoWGgxpuEMfNHjWL7RWXi2T79dz-6PaVK7R8UDI8aoT2_3k-Lz-3efzhflcvXh4rxdlrIiPJW1MkbShjVUYiw4q7GpqCICGt03TW-kJA2CvOkJZahXFPWcGsQo00gZ1nByUry-8W6nfqOVzP0JYuy2wW5E2HVe2O7vG2eHbu2_d_kDCMUsC57dCoL_NumYuo2NMhcmnPZT7HAFYcU4Qf-BEoQpRRWrMvr0H_TaTyH3ck_RquE1nYXPbygZfIxBm0PeCHbzdHV_pivDT-5WekB_zxL5BZAZywc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315489657</pqid></control><display><type>article</type><title>Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ramírez-Vélez, Robinson ; Pérez-Sousa, Miguel Ángel ; González-Ruíz, Katherine ; Cano-Gutierrez, Carlos A ; Schmidt-RioValle, Jacqueline ; Correa-Rodríguez, María ; Izquierdo, Mikel ; Romero-García, Jesús Astolfo ; Campos-Rodríguez, Adriana Yolanda ; Triana-Reina, Héctor Reynaldo ; González-Jiménez, Emilio</creator><creatorcontrib>Ramírez-Vélez, Robinson ; Pérez-Sousa, Miguel Ángel ; González-Ruíz, Katherine ; Cano-Gutierrez, Carlos A ; Schmidt-RioValle, Jacqueline ; Correa-Rodríguez, María ; Izquierdo, Mikel ; Romero-García, Jesús Astolfo ; Campos-Rodríguez, Adriana Yolanda ; Triana-Reina, Héctor Reynaldo ; González-Jiménez, Emilio</creatorcontrib><description>This study evaluated the predictive ability of 11 obesity- and lipid-related parameters, including body mass index (BMI), waist circumference (WC), waist-to-height ratio (WtHR), body roundness index (BRI), "A" body-shape index (ABSI), conicity index (CI), visceral adiposity index (VAI), triglyceride-to-glucose fasting index (TyG), triglyceride-to-glucose fasting related to BMI (TyG-BMI), triglyceride-to-glucose fasting related to WC (TyG-WC), and triglyceride-to-glucose fasting related to WtHR (TyG-WtHR), to identify patients from an elderly Colombian population with a high risk of prediabetes according to the 2016 American Diabetes Association criteria. The data were obtained from the 2015 Colombian Health and Wellbeing and Aging Survey. A total of 3307 elderly Colombian individuals (aged over 60 years) were included. Anthropometric data, fasting plasma glucose, blood lipid profiles, family history, and health-related behaviors were assessed, and prediabetes was defined as a fasting plasma glucose of 100 to 125 mg/dL. The areas under the receiver operating characteristic (ROC) curves (AUCs) were calculated for each anthropometric indicator, using the prediabetes classification to identify their sensitivity and specificity, and these indicated that the prevalence of prediabetes was 25.3% in this population. After adjusting for potential confounding factors, the TyG index was strongly associated with the odds of having prediabetes in both sexes, and multivariate logistic regression analysis showed that the ORs for prediabetes increased across quartiles ( &lt; 0.001). The TyG index was best able to identify prediabetes in either sex (AUC and optimal cut-off = 0.700 and 8.72, and 0.695 and 8.92 for men and women, respectively), suggesting that compared to the other parameters, the TyG index has the best discriminative power to predict prediabetes in the whole population. Thus, we propose the TyG index be used as a complementary marker for assessing prediabetes in older adults.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu11112654</identifier><identifier>PMID: 31689977</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>adiposity ; adults at risk ; Aged ; Aging ; blood glucose ; blood lipids ; blood plasma ; body mass index ; Body measurements ; Cardiovascular disease ; Diabetes mellitus ; Diabetes Mellitus - prevention &amp; control ; Diagnostic systems ; elderly ; fasting ; Female ; Glucose ; health behavior ; Humans ; Hyperglycemia ; Insulin ; Insulin resistance ; lipid composition ; Lipid Metabolism ; Lipids ; Lipids - blood ; Male ; men ; Metabolic disorders ; Metabolic syndrome ; Middle Aged ; Minority &amp; ethnic groups ; Obesity ; Older people ; Parameter estimation ; patients ; Prediabetic State - diagnosis ; regression analysis ; Risk Factors ; surveys ; waist circumference ; waist-to-height ratio ; women</subject><ispartof>Nutrients, 2019-11, Vol.11 (11), p.2654</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-6dffc58785c22a9762f45d3a0feb88bfcc381098b3571bd51b95f1757e1df7893</citedby><cites>FETCH-LOGICAL-c439t-6dffc58785c22a9762f45d3a0feb88bfcc381098b3571bd51b95f1757e1df7893</cites><orcidid>0000-0003-2775-0058 ; 0000-0002-1506-4272 ; 0000-0002-6334-7082 ; 0000-0003-3075-6960 ; 0000-0001-9165-4349 ; 0000-0001-5680-7880 ; 0000-0003-4392-6850 ; 0000-0001-5103-6028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893527/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893527/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31689977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramírez-Vélez, Robinson</creatorcontrib><creatorcontrib>Pérez-Sousa, Miguel Ángel</creatorcontrib><creatorcontrib>González-Ruíz, Katherine</creatorcontrib><creatorcontrib>Cano-Gutierrez, Carlos A</creatorcontrib><creatorcontrib>Schmidt-RioValle, Jacqueline</creatorcontrib><creatorcontrib>Correa-Rodríguez, María</creatorcontrib><creatorcontrib>Izquierdo, Mikel</creatorcontrib><creatorcontrib>Romero-García, Jesús Astolfo</creatorcontrib><creatorcontrib>Campos-Rodríguez, Adriana Yolanda</creatorcontrib><creatorcontrib>Triana-Reina, Héctor Reynaldo</creatorcontrib><creatorcontrib>González-Jiménez, Emilio</creatorcontrib><title>Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>This study evaluated the predictive ability of 11 obesity- and lipid-related parameters, including body mass index (BMI), waist circumference (WC), waist-to-height ratio (WtHR), body roundness index (BRI), "A" body-shape index (ABSI), conicity index (CI), visceral adiposity index (VAI), triglyceride-to-glucose fasting index (TyG), triglyceride-to-glucose fasting related to BMI (TyG-BMI), triglyceride-to-glucose fasting related to WC (TyG-WC), and triglyceride-to-glucose fasting related to WtHR (TyG-WtHR), to identify patients from an elderly Colombian population with a high risk of prediabetes according to the 2016 American Diabetes Association criteria. The data were obtained from the 2015 Colombian Health and Wellbeing and Aging Survey. A total of 3307 elderly Colombian individuals (aged over 60 years) were included. Anthropometric data, fasting plasma glucose, blood lipid profiles, family history, and health-related behaviors were assessed, and prediabetes was defined as a fasting plasma glucose of 100 to 125 mg/dL. The areas under the receiver operating characteristic (ROC) curves (AUCs) were calculated for each anthropometric indicator, using the prediabetes classification to identify their sensitivity and specificity, and these indicated that the prevalence of prediabetes was 25.3% in this population. After adjusting for potential confounding factors, the TyG index was strongly associated with the odds of having prediabetes in both sexes, and multivariate logistic regression analysis showed that the ORs for prediabetes increased across quartiles ( &lt; 0.001). The TyG index was best able to identify prediabetes in either sex (AUC and optimal cut-off = 0.700 and 8.72, and 0.695 and 8.92 for men and women, respectively), suggesting that compared to the other parameters, the TyG index has the best discriminative power to predict prediabetes in the whole population. Thus, we propose the TyG index be used as a complementary marker for assessing prediabetes in older adults.</description><subject>adiposity</subject><subject>adults at risk</subject><subject>Aged</subject><subject>Aging</subject><subject>blood glucose</subject><subject>blood lipids</subject><subject>blood plasma</subject><subject>body mass index</subject><subject>Body measurements</subject><subject>Cardiovascular disease</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - prevention &amp; control</subject><subject>Diagnostic systems</subject><subject>elderly</subject><subject>fasting</subject><subject>Female</subject><subject>Glucose</subject><subject>health behavior</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>lipid composition</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Lipids - blood</subject><subject>Male</subject><subject>men</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Middle Aged</subject><subject>Minority &amp; ethnic groups</subject><subject>Obesity</subject><subject>Older people</subject><subject>Parameter estimation</subject><subject>patients</subject><subject>Prediabetic State - diagnosis</subject><subject>regression analysis</subject><subject>Risk Factors</subject><subject>surveys</subject><subject>waist circumference</subject><subject>waist-to-height ratio</subject><subject>women</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkltrFDEUgAdRbKl98QdIwBeRjuYymUx8EMZ62cLClqr4OGRy2UmdTdYko-wv9e-Y2da1-uQhkEC-fJxzcoriMYIvCOHwpZtQDlzT6l5xjCHDZV1X5P6d81FxGuM1nINBVpOHxRFBdcM5Y8fFz1Wvo027EginwNJurSqv9CiSVuBSBLHRSYcIrANp0OBCaZessVIk6x3wBqxGpQNo1TSmCH7YNAABFnY9gCsbv87AZdDKij5rImil9EFZtwbJ733tRocsc-DtAYnRS7vXvwKty0uMu2jjrJpfYIgoWGgxpuEMfNHjWL7RWXi2T79dz-6PaVK7R8UDI8aoT2_3k-Lz-3efzhflcvXh4rxdlrIiPJW1MkbShjVUYiw4q7GpqCICGt03TW-kJA2CvOkJZahXFPWcGsQo00gZ1nByUry-8W6nfqOVzP0JYuy2wW5E2HVe2O7vG2eHbu2_d_kDCMUsC57dCoL_NumYuo2NMhcmnPZT7HAFYcU4Qf-BEoQpRRWrMvr0H_TaTyH3ck_RquE1nYXPbygZfIxBm0PeCHbzdHV_pivDT-5WekB_zxL5BZAZywc</recordid><startdate>20191104</startdate><enddate>20191104</enddate><creator>Ramírez-Vélez, Robinson</creator><creator>Pérez-Sousa, Miguel Ángel</creator><creator>González-Ruíz, Katherine</creator><creator>Cano-Gutierrez, Carlos A</creator><creator>Schmidt-RioValle, Jacqueline</creator><creator>Correa-Rodríguez, María</creator><creator>Izquierdo, Mikel</creator><creator>Romero-García, Jesús Astolfo</creator><creator>Campos-Rodríguez, Adriana Yolanda</creator><creator>Triana-Reina, Héctor Reynaldo</creator><creator>González-Jiménez, Emilio</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2775-0058</orcidid><orcidid>https://orcid.org/0000-0002-1506-4272</orcidid><orcidid>https://orcid.org/0000-0002-6334-7082</orcidid><orcidid>https://orcid.org/0000-0003-3075-6960</orcidid><orcidid>https://orcid.org/0000-0001-9165-4349</orcidid><orcidid>https://orcid.org/0000-0001-5680-7880</orcidid><orcidid>https://orcid.org/0000-0003-4392-6850</orcidid><orcidid>https://orcid.org/0000-0001-5103-6028</orcidid></search><sort><creationdate>20191104</creationdate><title>Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study</title><author>Ramírez-Vélez, Robinson ; Pérez-Sousa, Miguel Ángel ; González-Ruíz, Katherine ; Cano-Gutierrez, Carlos A ; Schmidt-RioValle, Jacqueline ; Correa-Rodríguez, María ; Izquierdo, Mikel ; Romero-García, Jesús Astolfo ; Campos-Rodríguez, Adriana Yolanda ; Triana-Reina, Héctor Reynaldo ; González-Jiménez, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-6dffc58785c22a9762f45d3a0feb88bfcc381098b3571bd51b95f1757e1df7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adiposity</topic><topic>adults at risk</topic><topic>Aged</topic><topic>Aging</topic><topic>blood glucose</topic><topic>blood lipids</topic><topic>blood plasma</topic><topic>body mass index</topic><topic>Body measurements</topic><topic>Cardiovascular disease</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - prevention &amp; control</topic><topic>Diagnostic systems</topic><topic>elderly</topic><topic>fasting</topic><topic>Female</topic><topic>Glucose</topic><topic>health behavior</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>lipid composition</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Lipids - blood</topic><topic>Male</topic><topic>men</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Middle Aged</topic><topic>Minority &amp; ethnic groups</topic><topic>Obesity</topic><topic>Older people</topic><topic>Parameter estimation</topic><topic>patients</topic><topic>Prediabetic State - diagnosis</topic><topic>regression analysis</topic><topic>Risk Factors</topic><topic>surveys</topic><topic>waist circumference</topic><topic>waist-to-height ratio</topic><topic>women</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez-Vélez, Robinson</creatorcontrib><creatorcontrib>Pérez-Sousa, Miguel Ángel</creatorcontrib><creatorcontrib>González-Ruíz, Katherine</creatorcontrib><creatorcontrib>Cano-Gutierrez, Carlos A</creatorcontrib><creatorcontrib>Schmidt-RioValle, Jacqueline</creatorcontrib><creatorcontrib>Correa-Rodríguez, María</creatorcontrib><creatorcontrib>Izquierdo, Mikel</creatorcontrib><creatorcontrib>Romero-García, Jesús Astolfo</creatorcontrib><creatorcontrib>Campos-Rodríguez, Adriana Yolanda</creatorcontrib><creatorcontrib>Triana-Reina, Héctor Reynaldo</creatorcontrib><creatorcontrib>González-Jiménez, Emilio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez-Vélez, Robinson</au><au>Pérez-Sousa, Miguel Ángel</au><au>González-Ruíz, Katherine</au><au>Cano-Gutierrez, Carlos A</au><au>Schmidt-RioValle, Jacqueline</au><au>Correa-Rodríguez, María</au><au>Izquierdo, Mikel</au><au>Romero-García, Jesús Astolfo</au><au>Campos-Rodríguez, Adriana Yolanda</au><au>Triana-Reina, Héctor Reynaldo</au><au>González-Jiménez, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2019-11-04</date><risdate>2019</risdate><volume>11</volume><issue>11</issue><spage>2654</spage><pages>2654-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>This study evaluated the predictive ability of 11 obesity- and lipid-related parameters, including body mass index (BMI), waist circumference (WC), waist-to-height ratio (WtHR), body roundness index (BRI), "A" body-shape index (ABSI), conicity index (CI), visceral adiposity index (VAI), triglyceride-to-glucose fasting index (TyG), triglyceride-to-glucose fasting related to BMI (TyG-BMI), triglyceride-to-glucose fasting related to WC (TyG-WC), and triglyceride-to-glucose fasting related to WtHR (TyG-WtHR), to identify patients from an elderly Colombian population with a high risk of prediabetes according to the 2016 American Diabetes Association criteria. The data were obtained from the 2015 Colombian Health and Wellbeing and Aging Survey. A total of 3307 elderly Colombian individuals (aged over 60 years) were included. Anthropometric data, fasting plasma glucose, blood lipid profiles, family history, and health-related behaviors were assessed, and prediabetes was defined as a fasting plasma glucose of 100 to 125 mg/dL. The areas under the receiver operating characteristic (ROC) curves (AUCs) were calculated for each anthropometric indicator, using the prediabetes classification to identify their sensitivity and specificity, and these indicated that the prevalence of prediabetes was 25.3% in this population. After adjusting for potential confounding factors, the TyG index was strongly associated with the odds of having prediabetes in both sexes, and multivariate logistic regression analysis showed that the ORs for prediabetes increased across quartiles ( &lt; 0.001). The TyG index was best able to identify prediabetes in either sex (AUC and optimal cut-off = 0.700 and 8.72, and 0.695 and 8.92 for men and women, respectively), suggesting that compared to the other parameters, the TyG index has the best discriminative power to predict prediabetes in the whole population. Thus, we propose the TyG index be used as a complementary marker for assessing prediabetes in older adults.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31689977</pmid><doi>10.3390/nu11112654</doi><orcidid>https://orcid.org/0000-0003-2775-0058</orcidid><orcidid>https://orcid.org/0000-0002-1506-4272</orcidid><orcidid>https://orcid.org/0000-0002-6334-7082</orcidid><orcidid>https://orcid.org/0000-0003-3075-6960</orcidid><orcidid>https://orcid.org/0000-0001-9165-4349</orcidid><orcidid>https://orcid.org/0000-0001-5680-7880</orcidid><orcidid>https://orcid.org/0000-0003-4392-6850</orcidid><orcidid>https://orcid.org/0000-0001-5103-6028</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2019-11, Vol.11 (11), p.2654
issn 2072-6643
2072-6643
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6893527
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects adiposity
adults at risk
Aged
Aging
blood glucose
blood lipids
blood plasma
body mass index
Body measurements
Cardiovascular disease
Diabetes mellitus
Diabetes Mellitus - prevention & control
Diagnostic systems
elderly
fasting
Female
Glucose
health behavior
Humans
Hyperglycemia
Insulin
Insulin resistance
lipid composition
Lipid Metabolism
Lipids
Lipids - blood
Male
men
Metabolic disorders
Metabolic syndrome
Middle Aged
Minority & ethnic groups
Obesity
Older people
Parameter estimation
patients
Prediabetic State - diagnosis
regression analysis
Risk Factors
surveys
waist circumference
waist-to-height ratio
women
title Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obesity-%20and%20Lipid-Related%20Parameters%20in%20the%20Identification%20of%20Older%20Adults%20with%20a%20High%20Risk%20of%20Prediabetes%20According%20to%20the%20American%20Diabetes%20Association:%20An%20Analysis%20of%20the%202015%20Health,%20Well-Being,%20and%20Aging%20Study&rft.jtitle=Nutrients&rft.au=Ram%C3%ADrez-V%C3%A9lez,%20Robinson&rft.date=2019-11-04&rft.volume=11&rft.issue=11&rft.spage=2654&rft.pages=2654-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu11112654&rft_dat=%3Cproquest_pubme%3E2400479317%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315489657&rft_id=info:pmid/31689977&rfr_iscdi=true