Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study

Understanding the toxicity of ionic liquids (ILs) is crucial in the search of greener chemicals. By comparing in vivo toxicity and in vitro interactions determined between compounds and biomimetic lipid membranes, more detailed toxicity vs. structure relation can be obtained. However, determining th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-12, Vol.9 (1), p.18349-11, Article 18349
Hauptverfasser: Rantamäki, Antti H., Chen, Wen, Hyväri, Paulus, Helminen, Jussi, Partl, Gabriel, King, Alistair W. T., Wiedmer, Susanne K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 18349
container_title Scientific reports
container_volume 9
creator Rantamäki, Antti H.
Chen, Wen
Hyväri, Paulus
Helminen, Jussi
Partl, Gabriel
King, Alistair W. T.
Wiedmer, Susanne K.
description Understanding the toxicity of ionic liquids (ILs) is crucial in the search of greener chemicals. By comparing in vivo toxicity and in vitro interactions determined between compounds and biomimetic lipid membranes, more detailed toxicity vs. structure relation can be obtained. However, determining the interactions between non-surface-active compounds and liposomes has been a challenging task. Organisational changes induced by ILs and IL-like spirocyclic compounds within 1,6-diphenyl-1,3,5-hexatriene-doped biomimetic liposomes was studied by steady-state fluorescence anisotropy technique. The extent of organisational changes detected within the liposome bilayers were compared to the toxicity of the compounds determined using Vibrio Fischeri bacteria. Four liposome compositions made of pure 1-palmitoyl-2-oleyl- sn -glycero-3-phosphocoline (POPC) and mixtures of POPC, 1-palmitoyl-2-oleyl- sn -glycero-3-phosphoserine (POPS), and cholesterol (Chol) were tested as biomimetic models. Changes observed within the POPC/POPS/Chol 55:20:25 bilayers correlated the best with the toxicity results: ten out of twelve compounds followed the trend of increasing bilayer disorder – increasing toxicity . The study suggests that the toxicity of non-surface-active compounds is dependent on their ability to diffuse into the bilayers. The extent of bilayer’s organisational changes correlates rather well with the toxicity of the compounds. Highly sensitive technique, such as fluorescence anisotropy measurements, is needed for detecting subtle changes within the bilayer structures.
doi_str_mv 10.1038/s41598-019-53893-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6892914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321614283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8d47e941ea9a30fbdf3e8bdb7b90124697620ce4101f6485415de1d25ae8029d3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEolXpC7BAltiwSfFfEnuDNBpRGGkqFgNry4lvWleJndpOR1nz4hhSSmGBN7Z8Px_fc09RvCb4gmAm3kdOKilKTGRZMSFZeXxWnFLMq5IySp8_OZ8U5zHe4rwqKjmRL4sTRhrZSCZOi-87lyDoLlnvIvI92nlnO7S3d7M1EWln0GGywXdLN-T7rR8nP7tcOdp0k7HJRz8CuvIGBnQFYxu0g3iBNuiQQJulPCSdAF0Osw8QO3AdoI2z0afgpyVDs1leFS96PUQ4f9jPim-XH79uP5f7L592282-7HjDUykMbyAbAC01w31regaiNW3TSkwor2VTU9wBJ5j0NRdVHpABYmilQWAqDTsrPqy609yOYHIzKehBTcGOOizKa6v-rjh7o679vaqFpJLwLPDuQSD4uxliUqPNnoYhe_ZzVHnapG7y3JuMvv0HvfVzcNneShFOBcsUXaku-BgD9I_NEKx-xqzWmFWOWf2KWR3zozdPbTw--R1qBtgKxFxy1xD-_P0f2R_g27Xl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321614283</pqid></control><display><type>article</type><title>Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rantamäki, Antti H. ; Chen, Wen ; Hyväri, Paulus ; Helminen, Jussi ; Partl, Gabriel ; King, Alistair W. T. ; Wiedmer, Susanne K.</creator><creatorcontrib>Rantamäki, Antti H. ; Chen, Wen ; Hyväri, Paulus ; Helminen, Jussi ; Partl, Gabriel ; King, Alistair W. T. ; Wiedmer, Susanne K.</creatorcontrib><description>Understanding the toxicity of ionic liquids (ILs) is crucial in the search of greener chemicals. By comparing in vivo toxicity and in vitro interactions determined between compounds and biomimetic lipid membranes, more detailed toxicity vs. structure relation can be obtained. However, determining the interactions between non-surface-active compounds and liposomes has been a challenging task. Organisational changes induced by ILs and IL-like spirocyclic compounds within 1,6-diphenyl-1,3,5-hexatriene-doped biomimetic liposomes was studied by steady-state fluorescence anisotropy technique. The extent of organisational changes detected within the liposome bilayers were compared to the toxicity of the compounds determined using Vibrio Fischeri bacteria. Four liposome compositions made of pure 1-palmitoyl-2-oleyl- sn -glycero-3-phosphocoline (POPC) and mixtures of POPC, 1-palmitoyl-2-oleyl- sn -glycero-3-phosphoserine (POPS), and cholesterol (Chol) were tested as biomimetic models. Changes observed within the POPC/POPS/Chol 55:20:25 bilayers correlated the best with the toxicity results: ten out of twelve compounds followed the trend of increasing bilayer disorder – increasing toxicity . The study suggests that the toxicity of non-surface-active compounds is dependent on their ability to diffuse into the bilayers. The extent of bilayer’s organisational changes correlates rather well with the toxicity of the compounds. Highly sensitive technique, such as fluorescence anisotropy measurements, is needed for detecting subtle changes within the bilayer structures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-53893-w</identifier><identifier>PMID: 31797938</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2267 ; 631/57/2270 ; 631/57/2271 ; 631/57/2283 ; 631/92/314 ; 631/92/56 ; 639/638/224 ; 639/638/45/287 ; 639/638/45/56 ; 639/638/899 ; 639/638/92 ; Anisotropy ; Biomimetics ; Cholesterol ; Cholesterol - chemistry ; Diphenylhexatriene - chemistry ; Fluorescence ; Fluorescence Polarization ; Green Chemistry Technology ; Humanities and Social Sciences ; Ionic Liquids - chemistry ; Ionic Liquids - toxicity ; Lipid Bilayers - chemistry ; Lipid membranes ; Liposomes ; Liposomes - chemistry ; Membranes - chemistry ; multidisciplinary ; Phosphatidylcholines - chemistry ; Phosphatidylserines - chemistry ; Phosphoserine ; Science ; Science (multidisciplinary) ; Surface-Active Agents - chemistry ; Toxicity</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.18349-11, Article 18349</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8d47e941ea9a30fbdf3e8bdb7b90124697620ce4101f6485415de1d25ae8029d3</citedby><cites>FETCH-LOGICAL-c474t-8d47e941ea9a30fbdf3e8bdb7b90124697620ce4101f6485415de1d25ae8029d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892914/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892914/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31797938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rantamäki, Antti H.</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Hyväri, Paulus</creatorcontrib><creatorcontrib>Helminen, Jussi</creatorcontrib><creatorcontrib>Partl, Gabriel</creatorcontrib><creatorcontrib>King, Alistair W. T.</creatorcontrib><creatorcontrib>Wiedmer, Susanne K.</creatorcontrib><title>Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Understanding the toxicity of ionic liquids (ILs) is crucial in the search of greener chemicals. By comparing in vivo toxicity and in vitro interactions determined between compounds and biomimetic lipid membranes, more detailed toxicity vs. structure relation can be obtained. However, determining the interactions between non-surface-active compounds and liposomes has been a challenging task. Organisational changes induced by ILs and IL-like spirocyclic compounds within 1,6-diphenyl-1,3,5-hexatriene-doped biomimetic liposomes was studied by steady-state fluorescence anisotropy technique. The extent of organisational changes detected within the liposome bilayers were compared to the toxicity of the compounds determined using Vibrio Fischeri bacteria. Four liposome compositions made of pure 1-palmitoyl-2-oleyl- sn -glycero-3-phosphocoline (POPC) and mixtures of POPC, 1-palmitoyl-2-oleyl- sn -glycero-3-phosphoserine (POPS), and cholesterol (Chol) were tested as biomimetic models. Changes observed within the POPC/POPS/Chol 55:20:25 bilayers correlated the best with the toxicity results: ten out of twelve compounds followed the trend of increasing bilayer disorder – increasing toxicity . The study suggests that the toxicity of non-surface-active compounds is dependent on their ability to diffuse into the bilayers. The extent of bilayer’s organisational changes correlates rather well with the toxicity of the compounds. Highly sensitive technique, such as fluorescence anisotropy measurements, is needed for detecting subtle changes within the bilayer structures.</description><subject>631/57/2267</subject><subject>631/57/2270</subject><subject>631/57/2271</subject><subject>631/57/2283</subject><subject>631/92/314</subject><subject>631/92/56</subject><subject>639/638/224</subject><subject>639/638/45/287</subject><subject>639/638/45/56</subject><subject>639/638/899</subject><subject>639/638/92</subject><subject>Anisotropy</subject><subject>Biomimetics</subject><subject>Cholesterol</subject><subject>Cholesterol - chemistry</subject><subject>Diphenylhexatriene - chemistry</subject><subject>Fluorescence</subject><subject>Fluorescence Polarization</subject><subject>Green Chemistry Technology</subject><subject>Humanities and Social Sciences</subject><subject>Ionic Liquids - chemistry</subject><subject>Ionic Liquids - toxicity</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid membranes</subject><subject>Liposomes</subject><subject>Liposomes - chemistry</subject><subject>Membranes - chemistry</subject><subject>multidisciplinary</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylserines - chemistry</subject><subject>Phosphoserine</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surface-Active Agents - chemistry</subject><subject>Toxicity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhSMEolXpC7BAltiwSfFfEnuDNBpRGGkqFgNry4lvWleJndpOR1nz4hhSSmGBN7Z8Px_fc09RvCb4gmAm3kdOKilKTGRZMSFZeXxWnFLMq5IySp8_OZ8U5zHe4rwqKjmRL4sTRhrZSCZOi-87lyDoLlnvIvI92nlnO7S3d7M1EWln0GGywXdLN-T7rR8nP7tcOdp0k7HJRz8CuvIGBnQFYxu0g3iBNuiQQJulPCSdAF0Osw8QO3AdoI2z0afgpyVDs1leFS96PUQ4f9jPim-XH79uP5f7L592282-7HjDUykMbyAbAC01w31regaiNW3TSkwor2VTU9wBJ5j0NRdVHpABYmilQWAqDTsrPqy609yOYHIzKehBTcGOOizKa6v-rjh7o679vaqFpJLwLPDuQSD4uxliUqPNnoYhe_ZzVHnapG7y3JuMvv0HvfVzcNneShFOBcsUXaku-BgD9I_NEKx-xqzWmFWOWf2KWR3zozdPbTw--R1qBtgKxFxy1xD-_P0f2R_g27Xl</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Rantamäki, Antti H.</creator><creator>Chen, Wen</creator><creator>Hyväri, Paulus</creator><creator>Helminen, Jussi</creator><creator>Partl, Gabriel</creator><creator>King, Alistair W. T.</creator><creator>Wiedmer, Susanne K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191204</creationdate><title>Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study</title><author>Rantamäki, Antti H. ; Chen, Wen ; Hyväri, Paulus ; Helminen, Jussi ; Partl, Gabriel ; King, Alistair W. T. ; Wiedmer, Susanne K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8d47e941ea9a30fbdf3e8bdb7b90124697620ce4101f6485415de1d25ae8029d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/57/2267</topic><topic>631/57/2270</topic><topic>631/57/2271</topic><topic>631/57/2283</topic><topic>631/92/314</topic><topic>631/92/56</topic><topic>639/638/224</topic><topic>639/638/45/287</topic><topic>639/638/45/56</topic><topic>639/638/899</topic><topic>639/638/92</topic><topic>Anisotropy</topic><topic>Biomimetics</topic><topic>Cholesterol</topic><topic>Cholesterol - chemistry</topic><topic>Diphenylhexatriene - chemistry</topic><topic>Fluorescence</topic><topic>Fluorescence Polarization</topic><topic>Green Chemistry Technology</topic><topic>Humanities and Social Sciences</topic><topic>Ionic Liquids - chemistry</topic><topic>Ionic Liquids - toxicity</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid membranes</topic><topic>Liposomes</topic><topic>Liposomes - chemistry</topic><topic>Membranes - chemistry</topic><topic>multidisciplinary</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylserines - chemistry</topic><topic>Phosphoserine</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surface-Active Agents - chemistry</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rantamäki, Antti H.</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Hyväri, Paulus</creatorcontrib><creatorcontrib>Helminen, Jussi</creatorcontrib><creatorcontrib>Partl, Gabriel</creatorcontrib><creatorcontrib>King, Alistair W. T.</creatorcontrib><creatorcontrib>Wiedmer, Susanne K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rantamäki, Antti H.</au><au>Chen, Wen</au><au>Hyväri, Paulus</au><au>Helminen, Jussi</au><au>Partl, Gabriel</au><au>King, Alistair W. T.</au><au>Wiedmer, Susanne K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-04</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>18349</spage><epage>11</epage><pages>18349-11</pages><artnum>18349</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Understanding the toxicity of ionic liquids (ILs) is crucial in the search of greener chemicals. By comparing in vivo toxicity and in vitro interactions determined between compounds and biomimetic lipid membranes, more detailed toxicity vs. structure relation can be obtained. However, determining the interactions between non-surface-active compounds and liposomes has been a challenging task. Organisational changes induced by ILs and IL-like spirocyclic compounds within 1,6-diphenyl-1,3,5-hexatriene-doped biomimetic liposomes was studied by steady-state fluorescence anisotropy technique. The extent of organisational changes detected within the liposome bilayers were compared to the toxicity of the compounds determined using Vibrio Fischeri bacteria. Four liposome compositions made of pure 1-palmitoyl-2-oleyl- sn -glycero-3-phosphocoline (POPC) and mixtures of POPC, 1-palmitoyl-2-oleyl- sn -glycero-3-phosphoserine (POPS), and cholesterol (Chol) were tested as biomimetic models. Changes observed within the POPC/POPS/Chol 55:20:25 bilayers correlated the best with the toxicity results: ten out of twelve compounds followed the trend of increasing bilayer disorder – increasing toxicity . The study suggests that the toxicity of non-surface-active compounds is dependent on their ability to diffuse into the bilayers. The extent of bilayer’s organisational changes correlates rather well with the toxicity of the compounds. Highly sensitive technique, such as fluorescence anisotropy measurements, is needed for detecting subtle changes within the bilayer structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31797938</pmid><doi>10.1038/s41598-019-53893-w</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-12, Vol.9 (1), p.18349-11, Article 18349
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6892914
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/57/2267
631/57/2270
631/57/2271
631/57/2283
631/92/314
631/92/56
639/638/224
639/638/45/287
639/638/45/56
639/638/899
639/638/92
Anisotropy
Biomimetics
Cholesterol
Cholesterol - chemistry
Diphenylhexatriene - chemistry
Fluorescence
Fluorescence Polarization
Green Chemistry Technology
Humanities and Social Sciences
Ionic Liquids - chemistry
Ionic Liquids - toxicity
Lipid Bilayers - chemistry
Lipid membranes
Liposomes
Liposomes - chemistry
Membranes - chemistry
multidisciplinary
Phosphatidylcholines - chemistry
Phosphatidylserines - chemistry
Phosphoserine
Science
Science (multidisciplinary)
Surface-Active Agents - chemistry
Toxicity
title Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20Ionic%20Liquids%20and%20Spirocyclic%20Compounds%20with%20Liposome%20Model%20Membranes.%20A%20Steady-State%20Fluorescence%20Anisotropy%20Study&rft.jtitle=Scientific%20reports&rft.au=Rantam%C3%A4ki,%20Antti%20H.&rft.date=2019-12-04&rft.volume=9&rft.issue=1&rft.spage=18349&rft.epage=11&rft.pages=18349-11&rft.artnum=18349&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-53893-w&rft_dat=%3Cproquest_pubme%3E2321614283%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321614283&rft_id=info:pmid/31797938&rfr_iscdi=true