Shell potentials for microgravity Bose–Einstein condensates

Extending the understanding of Bose–Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ microgravity 2019-12, Vol.5 (1), p.30-6, Article 30
Hauptverfasser: Lundblad, N., Carollo, R. A., Lannert, C., Gold, M. J., Jiang, X., Paseltiner, D., Sergay, N., Aveline, D. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 30
container_title NPJ microgravity
container_volume 5
creator Lundblad, N.
Carollo, R. A.
Lannert, C.
Gold, M. J.
Jiang, X.
Paseltiner, D.
Sergay, N.
Aveline, D. C.
description Extending the understanding of Bose–Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we propose to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.
doi_str_mv 10.1038/s41526-019-0087-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6892894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322817553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-efa66d5f32f73528fb7969657b42f820d5b15848744f867c04e44fe897547e213</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMottQ-gBsZcONmNPdkFgpa6gUKLtR1mE6TNqVNajItzM538A19ElNa6wVc5cD5zp_znx-AYwTPESTyIlLEMM8hKnIIpcibPdDGRJBcQs72f9Qt0I1xCiFElMuC4UPQIkgihiRsg8uniZ7NsoWvtattOYuZ8SGb2yr4cShXtm6yGx_1x9t737pYa-uyyruRdrGsdTwCBybN6O727YCX2_5z7z4fPN499K4HecUIr3NtSs5HzBBsBGFYmqEoeMGZGFJsJIYjNkRMUikoNZKLClKdKi0LwajQGJEOuNroLpbDuR5VaddQztQi2HkZGuVLq353nJ2osV-pZBjLgiaBs61A8K9LHWs1t7FKzkun_TIqTDCWSDBGEnr6B536ZXDJ3ppCSVFIkSi0odKhYgza7JZBUK3zUZt8VMpHrfNRTZo5-eliN_GVRgLwBoip5cY6fH_9v-one0acFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321689787</pqid></control><display><type>article</type><title>Shell potentials for microgravity Bose–Einstein condensates</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lundblad, N. ; Carollo, R. A. ; Lannert, C. ; Gold, M. J. ; Jiang, X. ; Paseltiner, D. ; Sergay, N. ; Aveline, D. C.</creator><creatorcontrib>Lundblad, N. ; Carollo, R. A. ; Lannert, C. ; Gold, M. J. ; Jiang, X. ; Paseltiner, D. ; Sergay, N. ; Aveline, D. C.</creatorcontrib><description>Extending the understanding of Bose–Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we propose to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.</description><identifier>ISSN: 2373-8065</identifier><identifier>EISSN: 2373-8065</identifier><identifier>DOI: 10.1038/s41526-019-0087-y</identifier><identifier>PMID: 31815180</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36 ; 639/766/530/951 ; Applied Microbiology ; Biomedical and Life Sciences ; Biotechnology ; Classical and Continuum Physics ; Condensates ; Experiments ; Geometry ; Immunology ; Life Sciences ; Microgravity ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>NPJ microgravity, 2019-12, Vol.5 (1), p.30-6, Article 30</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-efa66d5f32f73528fb7969657b42f820d5b15848744f867c04e44fe897547e213</citedby><cites>FETCH-LOGICAL-c536t-efa66d5f32f73528fb7969657b42f820d5b15848744f867c04e44fe897547e213</cites><orcidid>0000-0003-0430-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892894/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892894/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31815180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lundblad, N.</creatorcontrib><creatorcontrib>Carollo, R. A.</creatorcontrib><creatorcontrib>Lannert, C.</creatorcontrib><creatorcontrib>Gold, M. J.</creatorcontrib><creatorcontrib>Jiang, X.</creatorcontrib><creatorcontrib>Paseltiner, D.</creatorcontrib><creatorcontrib>Sergay, N.</creatorcontrib><creatorcontrib>Aveline, D. C.</creatorcontrib><title>Shell potentials for microgravity Bose–Einstein condensates</title><title>NPJ microgravity</title><addtitle>npj Microgravity</addtitle><addtitle>NPJ Microgravity</addtitle><description>Extending the understanding of Bose–Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we propose to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.</description><subject>639/766/36</subject><subject>639/766/530/951</subject><subject>Applied Microbiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Classical and Continuum Physics</subject><subject>Condensates</subject><subject>Experiments</subject><subject>Geometry</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Microgravity</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>2373-8065</issn><issn>2373-8065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctKAzEUhoMottQ-gBsZcONmNPdkFgpa6gUKLtR1mE6TNqVNajItzM538A19ElNa6wVc5cD5zp_znx-AYwTPESTyIlLEMM8hKnIIpcibPdDGRJBcQs72f9Qt0I1xCiFElMuC4UPQIkgihiRsg8uniZ7NsoWvtattOYuZ8SGb2yr4cShXtm6yGx_1x9t737pYa-uyyruRdrGsdTwCBybN6O727YCX2_5z7z4fPN499K4HecUIr3NtSs5HzBBsBGFYmqEoeMGZGFJsJIYjNkRMUikoNZKLClKdKi0LwajQGJEOuNroLpbDuR5VaddQztQi2HkZGuVLq353nJ2osV-pZBjLgiaBs61A8K9LHWs1t7FKzkun_TIqTDCWSDBGEnr6B536ZXDJ3ppCSVFIkSi0odKhYgza7JZBUK3zUZt8VMpHrfNRTZo5-eliN_GVRgLwBoip5cY6fH_9v-one0acFw</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Lundblad, N.</creator><creator>Carollo, R. A.</creator><creator>Lannert, C.</creator><creator>Gold, M. J.</creator><creator>Jiang, X.</creator><creator>Paseltiner, D.</creator><creator>Sergay, N.</creator><creator>Aveline, D. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0430-8064</orcidid></search><sort><creationdate>20191204</creationdate><title>Shell potentials for microgravity Bose–Einstein condensates</title><author>Lundblad, N. ; Carollo, R. A. ; Lannert, C. ; Gold, M. J. ; Jiang, X. ; Paseltiner, D. ; Sergay, N. ; Aveline, D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-efa66d5f32f73528fb7969657b42f820d5b15848744f867c04e44fe897547e213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/36</topic><topic>639/766/530/951</topic><topic>Applied Microbiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Classical and Continuum Physics</topic><topic>Condensates</topic><topic>Experiments</topic><topic>Geometry</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Microgravity</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundblad, N.</creatorcontrib><creatorcontrib>Carollo, R. A.</creatorcontrib><creatorcontrib>Lannert, C.</creatorcontrib><creatorcontrib>Gold, M. J.</creatorcontrib><creatorcontrib>Jiang, X.</creatorcontrib><creatorcontrib>Paseltiner, D.</creatorcontrib><creatorcontrib>Sergay, N.</creatorcontrib><creatorcontrib>Aveline, D. C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ microgravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundblad, N.</au><au>Carollo, R. A.</au><au>Lannert, C.</au><au>Gold, M. J.</au><au>Jiang, X.</au><au>Paseltiner, D.</au><au>Sergay, N.</au><au>Aveline, D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shell potentials for microgravity Bose–Einstein condensates</atitle><jtitle>NPJ microgravity</jtitle><stitle>npj Microgravity</stitle><addtitle>NPJ Microgravity</addtitle><date>2019-12-04</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>30</spage><epage>6</epage><pages>30-6</pages><artnum>30</artnum><issn>2373-8065</issn><eissn>2373-8065</eissn><abstract>Extending the understanding of Bose–Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we propose to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31815180</pmid><doi>10.1038/s41526-019-0087-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0430-8064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2373-8065
ispartof NPJ microgravity, 2019-12, Vol.5 (1), p.30-6, Article 30
issn 2373-8065
2373-8065
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6892894
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 639/766/36
639/766/530/951
Applied Microbiology
Biomedical and Life Sciences
Biotechnology
Classical and Continuum Physics
Condensates
Experiments
Geometry
Immunology
Life Sciences
Microgravity
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
title Shell potentials for microgravity Bose–Einstein condensates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shell%20potentials%20for%20microgravity%20Bose%E2%80%93Einstein%20condensates&rft.jtitle=NPJ%20microgravity&rft.au=Lundblad,%20N.&rft.date=2019-12-04&rft.volume=5&rft.issue=1&rft.spage=30&rft.epage=6&rft.pages=30-6&rft.artnum=30&rft.issn=2373-8065&rft.eissn=2373-8065&rft_id=info:doi/10.1038/s41526-019-0087-y&rft_dat=%3Cproquest_pubme%3E2322817553%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321689787&rft_id=info:pmid/31815180&rfr_iscdi=true