ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites
Host immunity to parasitic nematodes requires the generation of a robust type 2 cytokine response, characterized by the production of interleukin 13 (IL-13), which drives expulsion. Here, we show that infection with helminths in the intestine also induces an ILC2-driven, IL-13-dependent goblet cell...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2019-12, Vol.216 (12), p.2714-2723 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Host immunity to parasitic nematodes requires the generation of a robust type 2 cytokine response, characterized by the production of interleukin 13 (IL-13), which drives expulsion. Here, we show that infection with helminths in the intestine also induces an ILC2-driven, IL-13-dependent goblet cell hyperplasia and increased production of mucins (Muc5b and Muc5ac) at distal sites, including the lungs and other mucosal barrier sites. Critically, we show that type 2 priming of lung tissue through increased mucin production inhibits the progression of a subsequent lung migratory helminth infection and limits its transit through the airways. These data show that infection by gastrointestinal-dwelling helminths induces a systemic innate mucin response that primes peripheral barrier sites for protection against subsequent secondary helminth infections. These data suggest that innate-driven priming of mucus barriers may have evolved to protect from subsequent infections with multiple helminth species, which occur naturally in endemic areas. |
---|---|
ISSN: | 0022-1007 1540-9538 |
DOI: | 10.1084/jem.20180610 |