Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing
Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first gen...
Gespeichert in:
Veröffentlicht in: | Cell research 2019-11, Vol.29 (11), p.881-894 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 894 |
---|---|
container_issue | 11 |
container_start_page | 881 |
container_title | Cell research |
container_volume | 29 |
creator | Zeng, Yang He, Jian Bai, Zhijie Li, Zongcheng Gong, Yandong Liu, Chen Ni, Yanli Du, Junjie Ma, Chunyu Bian, Lihong Lan, Yu Liu, Bing |
description | Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of
RUNX1
,
MYB
and
ANGPT1
. Importantly, subcategorizing CD34
+
CD45
−
ECs into a CD44
+
population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including
EMCN
,
PROCR
and
RUNX1T1
. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells. |
doi_str_mv | 10.1038/s41422-019-0228-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288004461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-20112842c953cb637753fd06f8cedc7ab7fb6ef34e20ab7f89449757eac4a6333</originalsourceid><addsrcrecordid>eNp1kVtrFTEUhYMotlZ_gC8S8MWX2Nwn8yKU4g1KhdI-h0y655yUmeSYZArn35vx1HoB85KE_e2VvbIQes3oe0aFOS2SSc4JZT2hnBuin6Bj1klDOiPM03amlBGqKT9CL0q5o5QrqdhzdCSYokwxc4yG6-x8iBtct4DHkEvFW5hdTbsUoAaPS4UZe5gmvIEI2dWQIg4Rb5fZRQzzkPcJD3tcmsgE5Cd5dXmGC3xfIK7SL9Gz0U0FXj3sJ-jm08fr8y_k4tvnr-dnF8QroSvhlDFuJPe9En7QouuUGG-pHo2HW9-5oRsHDaOQwOl6Mb2Ufac6cF46LYQ4QR8OurtlmFsLxJrdZHc5zC7vbXLB_l2JYWs36d5q01a_Crx7EMipDV-qnUNZDbkIaSm2fbGhVErNGvr2H_QuLTk2e5YLxrligslGsQPlcyolw_g4DKN2TdAeErQtQbsmaHXrefOni8eOX5E1gB-A0kpxA_n30_9X_QHbTKdk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312251314</pqid></control><display><type>article</type><title>Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Zeng, Yang ; He, Jian ; Bai, Zhijie ; Li, Zongcheng ; Gong, Yandong ; Liu, Chen ; Ni, Yanli ; Du, Junjie ; Ma, Chunyu ; Bian, Lihong ; Lan, Yu ; Liu, Bing</creator><creatorcontrib>Zeng, Yang ; He, Jian ; Bai, Zhijie ; Li, Zongcheng ; Gong, Yandong ; Liu, Chen ; Ni, Yanli ; Du, Junjie ; Ma, Chunyu ; Bian, Lihong ; Lan, Yu ; Liu, Bing</creatorcontrib><description>Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of
RUNX1
,
MYB
and
ANGPT1
. Importantly, subcategorizing CD34
+
CD45
−
ECs into a CD44
+
population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including
EMCN
,
PROCR
and
RUNX1T1
. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.</description><identifier>ISSN: 1001-0602</identifier><identifier>EISSN: 1748-7838</identifier><identifier>DOI: 10.1038/s41422-019-0228-6</identifier><identifier>PMID: 31501518</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 631/136/532/1542 ; 631/532/1542 ; Aorta ; Biomarkers - metabolism ; Biomedical and Life Sciences ; CD34 antigen ; CD44 antigen ; CD45 antigen ; Cell Biology ; Cells, Cultured ; Embryo, Mammalian - cytology ; Embryogenesis ; Embryonic Development - genetics ; Embryonic growth stage ; Embryos ; Endothelial cells ; Gene expression ; Gene sequencing ; Genomes ; Hemangioblasts - cytology ; Hemangioblasts - metabolism ; Hematopoiesis - genetics ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Humans ; Life Sciences ; Pluripotency ; Progenitor cells ; Ribonucleic acid ; RNA ; RNA-Seq - methods ; Runx1 protein ; Single-Cell Analysis - methods ; Stem cells ; Tracing ; Transcriptome</subject><ispartof>Cell research, 2019-11, Vol.29 (11), p.881-894</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-20112842c953cb637753fd06f8cedc7ab7fb6ef34e20ab7f89449757eac4a6333</citedby><cites>FETCH-LOGICAL-c536t-20112842c953cb637753fd06f8cedc7ab7fb6ef34e20ab7f89449757eac4a6333</cites><orcidid>0000-0002-5189-5268 ; 0000-0003-2231-1320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888893/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888893/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31501518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Yang</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Bai, Zhijie</creatorcontrib><creatorcontrib>Li, Zongcheng</creatorcontrib><creatorcontrib>Gong, Yandong</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ni, Yanli</creatorcontrib><creatorcontrib>Du, Junjie</creatorcontrib><creatorcontrib>Ma, Chunyu</creatorcontrib><creatorcontrib>Bian, Lihong</creatorcontrib><creatorcontrib>Lan, Yu</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><title>Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing</title><title>Cell research</title><addtitle>Cell Res</addtitle><addtitle>Cell Res</addtitle><description>Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of
RUNX1
,
MYB
and
ANGPT1
. Importantly, subcategorizing CD34
+
CD45
−
ECs into a CD44
+
population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including
EMCN
,
PROCR
and
RUNX1T1
. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.</description><subject>13/31</subject><subject>631/136/532/1542</subject><subject>631/532/1542</subject><subject>Aorta</subject><subject>Biomarkers - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>CD34 antigen</subject><subject>CD44 antigen</subject><subject>CD45 antigen</subject><subject>Cell Biology</subject><subject>Cells, Cultured</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryogenesis</subject><subject>Embryonic Development - genetics</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Endothelial cells</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Hemangioblasts - cytology</subject><subject>Hemangioblasts - metabolism</subject><subject>Hematopoiesis - genetics</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Pluripotency</subject><subject>Progenitor cells</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-Seq - methods</subject><subject>Runx1 protein</subject><subject>Single-Cell Analysis - methods</subject><subject>Stem cells</subject><subject>Tracing</subject><subject>Transcriptome</subject><issn>1001-0602</issn><issn>1748-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kVtrFTEUhYMotlZ_gC8S8MWX2Nwn8yKU4g1KhdI-h0y655yUmeSYZArn35vx1HoB85KE_e2VvbIQes3oe0aFOS2SSc4JZT2hnBuin6Bj1klDOiPM03amlBGqKT9CL0q5o5QrqdhzdCSYokwxc4yG6-x8iBtct4DHkEvFW5hdTbsUoAaPS4UZe5gmvIEI2dWQIg4Rb5fZRQzzkPcJD3tcmsgE5Cd5dXmGC3xfIK7SL9Gz0U0FXj3sJ-jm08fr8y_k4tvnr-dnF8QroSvhlDFuJPe9En7QouuUGG-pHo2HW9-5oRsHDaOQwOl6Mb2Ufac6cF46LYQ4QR8OurtlmFsLxJrdZHc5zC7vbXLB_l2JYWs36d5q01a_Crx7EMipDV-qnUNZDbkIaSm2fbGhVErNGvr2H_QuLTk2e5YLxrligslGsQPlcyolw_g4DKN2TdAeErQtQbsmaHXrefOni8eOX5E1gB-A0kpxA_n30_9X_QHbTKdk</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zeng, Yang</creator><creator>He, Jian</creator><creator>Bai, Zhijie</creator><creator>Li, Zongcheng</creator><creator>Gong, Yandong</creator><creator>Liu, Chen</creator><creator>Ni, Yanli</creator><creator>Du, Junjie</creator><creator>Ma, Chunyu</creator><creator>Bian, Lihong</creator><creator>Lan, Yu</creator><creator>Liu, Bing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5189-5268</orcidid><orcidid>https://orcid.org/0000-0003-2231-1320</orcidid></search><sort><creationdate>20191101</creationdate><title>Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing</title><author>Zeng, Yang ; He, Jian ; Bai, Zhijie ; Li, Zongcheng ; Gong, Yandong ; Liu, Chen ; Ni, Yanli ; Du, Junjie ; Ma, Chunyu ; Bian, Lihong ; Lan, Yu ; Liu, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-20112842c953cb637753fd06f8cedc7ab7fb6ef34e20ab7f89449757eac4a6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/31</topic><topic>631/136/532/1542</topic><topic>631/532/1542</topic><topic>Aorta</topic><topic>Biomarkers - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>CD34 antigen</topic><topic>CD44 antigen</topic><topic>CD45 antigen</topic><topic>Cell Biology</topic><topic>Cells, Cultured</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryogenesis</topic><topic>Embryonic Development - genetics</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Endothelial cells</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Hemangioblasts - cytology</topic><topic>Hemangioblasts - metabolism</topic><topic>Hematopoiesis - genetics</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Pluripotency</topic><topic>Progenitor cells</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-Seq - methods</topic><topic>Runx1 protein</topic><topic>Single-Cell Analysis - methods</topic><topic>Stem cells</topic><topic>Tracing</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yang</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Bai, Zhijie</creatorcontrib><creatorcontrib>Li, Zongcheng</creatorcontrib><creatorcontrib>Gong, Yandong</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ni, Yanli</creatorcontrib><creatorcontrib>Du, Junjie</creatorcontrib><creatorcontrib>Ma, Chunyu</creatorcontrib><creatorcontrib>Bian, Lihong</creatorcontrib><creatorcontrib>Lan, Yu</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yang</au><au>He, Jian</au><au>Bai, Zhijie</au><au>Li, Zongcheng</au><au>Gong, Yandong</au><au>Liu, Chen</au><au>Ni, Yanli</au><au>Du, Junjie</au><au>Ma, Chunyu</au><au>Bian, Lihong</au><au>Lan, Yu</au><au>Liu, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing</atitle><jtitle>Cell research</jtitle><stitle>Cell Res</stitle><addtitle>Cell Res</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>29</volume><issue>11</issue><spage>881</spage><epage>894</epage><pages>881-894</pages><issn>1001-0602</issn><eissn>1748-7838</eissn><abstract>Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of
RUNX1
,
MYB
and
ANGPT1
. Importantly, subcategorizing CD34
+
CD45
−
ECs into a CD44
+
population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including
EMCN
,
PROCR
and
RUNX1T1
. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31501518</pmid><doi>10.1038/s41422-019-0228-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5189-5268</orcidid><orcidid>https://orcid.org/0000-0003-2231-1320</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0602 |
ispartof | Cell research, 2019-11, Vol.29 (11), p.881-894 |
issn | 1001-0602 1748-7838 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888893 |
source | MEDLINE; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 13/31 631/136/532/1542 631/532/1542 Aorta Biomarkers - metabolism Biomedical and Life Sciences CD34 antigen CD44 antigen CD45 antigen Cell Biology Cells, Cultured Embryo, Mammalian - cytology Embryogenesis Embryonic Development - genetics Embryonic growth stage Embryos Endothelial cells Gene expression Gene sequencing Genomes Hemangioblasts - cytology Hemangioblasts - metabolism Hematopoiesis - genetics Hematopoietic stem cells Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Humans Life Sciences Pluripotency Progenitor cells Ribonucleic acid RNA RNA-Seq - methods Runx1 protein Single-Cell Analysis - methods Stem cells Tracing Transcriptome |
title | Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20the%20first%20hematopoietic%20stem%20cell%20generation%20in%20human%20embryo%20by%20single-cell%20RNA%20sequencing&rft.jtitle=Cell%20research&rft.au=Zeng,%20Yang&rft.date=2019-11-01&rft.volume=29&rft.issue=11&rft.spage=881&rft.epage=894&rft.pages=881-894&rft.issn=1001-0602&rft.eissn=1748-7838&rft_id=info:doi/10.1038/s41422-019-0228-6&rft_dat=%3Cproquest_pubme%3E2288004461%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312251314&rft_id=info:pmid/31501518&rfr_iscdi=true |