Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing

Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell research 2019-11, Vol.29 (11), p.881-894
Hauptverfasser: Zeng, Yang, He, Jian, Bai, Zhijie, Li, Zongcheng, Gong, Yandong, Liu, Chen, Ni, Yanli, Du, Junjie, Ma, Chunyu, Bian, Lihong, Lan, Yu, Liu, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 894
container_issue 11
container_start_page 881
container_title Cell research
container_volume 29
creator Zeng, Yang
He, Jian
Bai, Zhijie
Li, Zongcheng
Gong, Yandong
Liu, Chen
Ni, Yanli
Du, Junjie
Ma, Chunyu
Bian, Lihong
Lan, Yu
Liu, Bing
description Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1 , MYB and ANGPT1 . Importantly, subcategorizing CD34 + CD45 − ECs into a CD44 + population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN , PROCR and RUNX1T1 . We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.
doi_str_mv 10.1038/s41422-019-0228-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288004461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-20112842c953cb637753fd06f8cedc7ab7fb6ef34e20ab7f89449757eac4a6333</originalsourceid><addsrcrecordid>eNp1kVtrFTEUhYMotlZ_gC8S8MWX2Nwn8yKU4g1KhdI-h0y655yUmeSYZArn35vx1HoB85KE_e2VvbIQes3oe0aFOS2SSc4JZT2hnBuin6Bj1klDOiPM03amlBGqKT9CL0q5o5QrqdhzdCSYokwxc4yG6-x8iBtct4DHkEvFW5hdTbsUoAaPS4UZe5gmvIEI2dWQIg4Rb5fZRQzzkPcJD3tcmsgE5Cd5dXmGC3xfIK7SL9Gz0U0FXj3sJ-jm08fr8y_k4tvnr-dnF8QroSvhlDFuJPe9En7QouuUGG-pHo2HW9-5oRsHDaOQwOl6Mb2Ufac6cF46LYQ4QR8OurtlmFsLxJrdZHc5zC7vbXLB_l2JYWs36d5q01a_Crx7EMipDV-qnUNZDbkIaSm2fbGhVErNGvr2H_QuLTk2e5YLxrligslGsQPlcyolw_g4DKN2TdAeErQtQbsmaHXrefOni8eOX5E1gB-A0kpxA_n30_9X_QHbTKdk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312251314</pqid></control><display><type>article</type><title>Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Zeng, Yang ; He, Jian ; Bai, Zhijie ; Li, Zongcheng ; Gong, Yandong ; Liu, Chen ; Ni, Yanli ; Du, Junjie ; Ma, Chunyu ; Bian, Lihong ; Lan, Yu ; Liu, Bing</creator><creatorcontrib>Zeng, Yang ; He, Jian ; Bai, Zhijie ; Li, Zongcheng ; Gong, Yandong ; Liu, Chen ; Ni, Yanli ; Du, Junjie ; Ma, Chunyu ; Bian, Lihong ; Lan, Yu ; Liu, Bing</creatorcontrib><description>Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1 , MYB and ANGPT1 . Importantly, subcategorizing CD34 + CD45 − ECs into a CD44 + population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN , PROCR and RUNX1T1 . We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.</description><identifier>ISSN: 1001-0602</identifier><identifier>EISSN: 1748-7838</identifier><identifier>DOI: 10.1038/s41422-019-0228-6</identifier><identifier>PMID: 31501518</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 631/136/532/1542 ; 631/532/1542 ; Aorta ; Biomarkers - metabolism ; Biomedical and Life Sciences ; CD34 antigen ; CD44 antigen ; CD45 antigen ; Cell Biology ; Cells, Cultured ; Embryo, Mammalian - cytology ; Embryogenesis ; Embryonic Development - genetics ; Embryonic growth stage ; Embryos ; Endothelial cells ; Gene expression ; Gene sequencing ; Genomes ; Hemangioblasts - cytology ; Hemangioblasts - metabolism ; Hematopoiesis - genetics ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Humans ; Life Sciences ; Pluripotency ; Progenitor cells ; Ribonucleic acid ; RNA ; RNA-Seq - methods ; Runx1 protein ; Single-Cell Analysis - methods ; Stem cells ; Tracing ; Transcriptome</subject><ispartof>Cell research, 2019-11, Vol.29 (11), p.881-894</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-20112842c953cb637753fd06f8cedc7ab7fb6ef34e20ab7f89449757eac4a6333</citedby><cites>FETCH-LOGICAL-c536t-20112842c953cb637753fd06f8cedc7ab7fb6ef34e20ab7f89449757eac4a6333</cites><orcidid>0000-0002-5189-5268 ; 0000-0003-2231-1320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888893/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888893/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31501518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Yang</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Bai, Zhijie</creatorcontrib><creatorcontrib>Li, Zongcheng</creatorcontrib><creatorcontrib>Gong, Yandong</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ni, Yanli</creatorcontrib><creatorcontrib>Du, Junjie</creatorcontrib><creatorcontrib>Ma, Chunyu</creatorcontrib><creatorcontrib>Bian, Lihong</creatorcontrib><creatorcontrib>Lan, Yu</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><title>Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing</title><title>Cell research</title><addtitle>Cell Res</addtitle><addtitle>Cell Res</addtitle><description>Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1 , MYB and ANGPT1 . Importantly, subcategorizing CD34 + CD45 − ECs into a CD44 + population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN , PROCR and RUNX1T1 . We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.</description><subject>13/31</subject><subject>631/136/532/1542</subject><subject>631/532/1542</subject><subject>Aorta</subject><subject>Biomarkers - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>CD34 antigen</subject><subject>CD44 antigen</subject><subject>CD45 antigen</subject><subject>Cell Biology</subject><subject>Cells, Cultured</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryogenesis</subject><subject>Embryonic Development - genetics</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Endothelial cells</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Hemangioblasts - cytology</subject><subject>Hemangioblasts - metabolism</subject><subject>Hematopoiesis - genetics</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Pluripotency</subject><subject>Progenitor cells</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-Seq - methods</subject><subject>Runx1 protein</subject><subject>Single-Cell Analysis - methods</subject><subject>Stem cells</subject><subject>Tracing</subject><subject>Transcriptome</subject><issn>1001-0602</issn><issn>1748-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kVtrFTEUhYMotlZ_gC8S8MWX2Nwn8yKU4g1KhdI-h0y655yUmeSYZArn35vx1HoB85KE_e2VvbIQes3oe0aFOS2SSc4JZT2hnBuin6Bj1klDOiPM03amlBGqKT9CL0q5o5QrqdhzdCSYokwxc4yG6-x8iBtct4DHkEvFW5hdTbsUoAaPS4UZe5gmvIEI2dWQIg4Rb5fZRQzzkPcJD3tcmsgE5Cd5dXmGC3xfIK7SL9Gz0U0FXj3sJ-jm08fr8y_k4tvnr-dnF8QroSvhlDFuJPe9En7QouuUGG-pHo2HW9-5oRsHDaOQwOl6Mb2Ufac6cF46LYQ4QR8OurtlmFsLxJrdZHc5zC7vbXLB_l2JYWs36d5q01a_Crx7EMipDV-qnUNZDbkIaSm2fbGhVErNGvr2H_QuLTk2e5YLxrligslGsQPlcyolw_g4DKN2TdAeErQtQbsmaHXrefOni8eOX5E1gB-A0kpxA_n30_9X_QHbTKdk</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zeng, Yang</creator><creator>He, Jian</creator><creator>Bai, Zhijie</creator><creator>Li, Zongcheng</creator><creator>Gong, Yandong</creator><creator>Liu, Chen</creator><creator>Ni, Yanli</creator><creator>Du, Junjie</creator><creator>Ma, Chunyu</creator><creator>Bian, Lihong</creator><creator>Lan, Yu</creator><creator>Liu, Bing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5189-5268</orcidid><orcidid>https://orcid.org/0000-0003-2231-1320</orcidid></search><sort><creationdate>20191101</creationdate><title>Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing</title><author>Zeng, Yang ; He, Jian ; Bai, Zhijie ; Li, Zongcheng ; Gong, Yandong ; Liu, Chen ; Ni, Yanli ; Du, Junjie ; Ma, Chunyu ; Bian, Lihong ; Lan, Yu ; Liu, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-20112842c953cb637753fd06f8cedc7ab7fb6ef34e20ab7f89449757eac4a6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/31</topic><topic>631/136/532/1542</topic><topic>631/532/1542</topic><topic>Aorta</topic><topic>Biomarkers - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>CD34 antigen</topic><topic>CD44 antigen</topic><topic>CD45 antigen</topic><topic>Cell Biology</topic><topic>Cells, Cultured</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryogenesis</topic><topic>Embryonic Development - genetics</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Endothelial cells</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Hemangioblasts - cytology</topic><topic>Hemangioblasts - metabolism</topic><topic>Hematopoiesis - genetics</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Pluripotency</topic><topic>Progenitor cells</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-Seq - methods</topic><topic>Runx1 protein</topic><topic>Single-Cell Analysis - methods</topic><topic>Stem cells</topic><topic>Tracing</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yang</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Bai, Zhijie</creatorcontrib><creatorcontrib>Li, Zongcheng</creatorcontrib><creatorcontrib>Gong, Yandong</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ni, Yanli</creatorcontrib><creatorcontrib>Du, Junjie</creatorcontrib><creatorcontrib>Ma, Chunyu</creatorcontrib><creatorcontrib>Bian, Lihong</creatorcontrib><creatorcontrib>Lan, Yu</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yang</au><au>He, Jian</au><au>Bai, Zhijie</au><au>Li, Zongcheng</au><au>Gong, Yandong</au><au>Liu, Chen</au><au>Ni, Yanli</au><au>Du, Junjie</au><au>Ma, Chunyu</au><au>Bian, Lihong</au><au>Lan, Yu</au><au>Liu, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing</atitle><jtitle>Cell research</jtitle><stitle>Cell Res</stitle><addtitle>Cell Res</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>29</volume><issue>11</issue><spage>881</spage><epage>894</epage><pages>881-894</pages><issn>1001-0602</issn><eissn>1748-7838</eissn><abstract>Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1 , MYB and ANGPT1 . Importantly, subcategorizing CD34 + CD45 − ECs into a CD44 + population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN , PROCR and RUNX1T1 . We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31501518</pmid><doi>10.1038/s41422-019-0228-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5189-5268</orcidid><orcidid>https://orcid.org/0000-0003-2231-1320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-0602
ispartof Cell research, 2019-11, Vol.29 (11), p.881-894
issn 1001-0602
1748-7838
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888893
source MEDLINE; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 13/31
631/136/532/1542
631/532/1542
Aorta
Biomarkers - metabolism
Biomedical and Life Sciences
CD34 antigen
CD44 antigen
CD45 antigen
Cell Biology
Cells, Cultured
Embryo, Mammalian - cytology
Embryogenesis
Embryonic Development - genetics
Embryonic growth stage
Embryos
Endothelial cells
Gene expression
Gene sequencing
Genomes
Hemangioblasts - cytology
Hemangioblasts - metabolism
Hematopoiesis - genetics
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Humans
Life Sciences
Pluripotency
Progenitor cells
Ribonucleic acid
RNA
RNA-Seq - methods
Runx1 protein
Single-Cell Analysis - methods
Stem cells
Tracing
Transcriptome
title Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20the%20first%20hematopoietic%20stem%20cell%20generation%20in%20human%20embryo%20by%20single-cell%20RNA%20sequencing&rft.jtitle=Cell%20research&rft.au=Zeng,%20Yang&rft.date=2019-11-01&rft.volume=29&rft.issue=11&rft.spage=881&rft.epage=894&rft.pages=881-894&rft.issn=1001-0602&rft.eissn=1748-7838&rft_id=info:doi/10.1038/s41422-019-0228-6&rft_dat=%3Cproquest_pubme%3E2288004461%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312251314&rft_id=info:pmid/31501518&rfr_iscdi=true