Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) n Repeat

The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG) repeat in and . The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM's most prominent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-11, Vol.20 (22), p.5685
Hauptverfasser: André, Laurène M, van Cruchten, Remco T P, Willemse, Marieke, Bezstarosti, Karel, Demmers, Jeroen A A, van Agtmaal, Ellen L, Wansink, Derick G, Wieringa, Bé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 5685
container_title International journal of molecular sciences
container_volume 20
creator André, Laurène M
van Cruchten, Remco T P
Willemse, Marieke
Bezstarosti, Karel
Demmers, Jeroen A A
van Agtmaal, Ellen L
Wansink, Derick G
Wieringa, Bé
description The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG) repeat in and . The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM's most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing. We found that excision of the repeat restored the ability of cDM myoblasts to engage in myogenic fusion, preventing the ensuing myotubes from remaining immature. Although the cDM-typical epigenetic status of the DM1 locus and the expression of genes therein were not altered upon removal of the repeat, analyses at the transcriptome and proteome level revealed that early abnormalities in the temporal expression of differentiation regulators, myogenic progression markers, and alternative splicing patterns before and immediately after the onset of differentiation became normalized. Our observation that molecular and cellular features of cDM are reversible in vitro and can be corrected by repeat-directed genome editing in muscle progenitors, when already committed and poised for myogenic differentiation, is important information for the future development of gene therapy for different forms of myotonic dystrophy type 1 (DM1).
doi_str_mv 10.3390/ijms20225685
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333255560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-21a440d4c1498962ee19cf8722089a91d0d8ad28f81975cc46d60b01349896213</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVJaT7aW89F0EsC2VYaybJ8CYTNJi2ktIT0LLSyvKvFlhxJG-L_Pjabhm1OGub99JiZh9BnSr4xVpHvbtMlIACFkMU7dEQ5wIwQUR7s1YfoOKUNIcCgqD6gQ0ZLIQD4ERrurAmPNg7YeZzXFv8awsp6Z_CfGFZRdzg0eB781Mu6neQcJvlqSDmGfj1MrWWrU05YN9lGvHgyLrngp5-T4-Kp1762NT6d39-cYY_vbG91_ojeN7pN9tPLe4L-Xi_u5z9mt79vfs4vb2eGU8gzoJpzUnNDeSUrAdbSyjSyBCCy0hWtSS11DbKRtCoLY7ioBVkSynY4ZSfoYufbb5edrY31OepW9dF1Og4qaKf-V7xbq1V4VEJKWUgYDU5fDGJ42NqUVeeSsW2rvQ3bpIBRWXIiqRjRr2_QTdhGP643Umw8flEIMlLnO8rEkFK0zeswlKgpU7Wf6Yh_2V_gFf4XInsGjVuc1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333255560</pqid></control><display><type>article</type><title>Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) n Repeat</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>André, Laurène M ; van Cruchten, Remco T P ; Willemse, Marieke ; Bezstarosti, Karel ; Demmers, Jeroen A A ; van Agtmaal, Ellen L ; Wansink, Derick G ; Wieringa, Bé</creator><creatorcontrib>André, Laurène M ; van Cruchten, Remco T P ; Willemse, Marieke ; Bezstarosti, Karel ; Demmers, Jeroen A A ; van Agtmaal, Ellen L ; Wansink, Derick G ; Wieringa, Bé</creatorcontrib><description>The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG) repeat in and . The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM's most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing. We found that excision of the repeat restored the ability of cDM myoblasts to engage in myogenic fusion, preventing the ensuing myotubes from remaining immature. Although the cDM-typical epigenetic status of the DM1 locus and the expression of genes therein were not altered upon removal of the repeat, analyses at the transcriptome and proteome level revealed that early abnormalities in the temporal expression of differentiation regulators, myogenic progression markers, and alternative splicing patterns before and immediately after the onset of differentiation became normalized. Our observation that molecular and cellular features of cDM are reversible in vitro and can be corrected by repeat-directed genome editing in muscle progenitors, when already committed and poised for myogenic differentiation, is important information for the future development of gene therapy for different forms of myotonic dystrophy type 1 (DM1).</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20225685</identifier><identifier>PMID: 31766224</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cell cycle ; Cell Line ; Chromatin ; CRISPR ; Deoxyribonucleic acid ; Differentiation ; DNA ; Dystrophy ; Epigenesis, Genetic ; Fetuses ; Gene Editing ; Gene expression ; Genetic Therapy ; Genomes ; Humans ; Kinases ; Maturation ; Morphology ; Muscle Development ; Muscles ; Musculoskeletal system ; Mutants ; Myoblasts ; Myoblasts - cytology ; Myoblasts - metabolism ; Myoblasts - pathology ; Myogenesis ; Myotonic dystrophy ; Myotonic Dystrophy - genetics ; Myotonic Dystrophy - pathology ; Myotonic Dystrophy - therapy ; Myotonin-Protein Kinase - genetics ; Myotubes ; Protein kinase ; Proteins ; RNA processing ; Skeletal muscle ; Transcription factors ; Trinucleotide Repeats</subject><ispartof>International journal of molecular sciences, 2019-11, Vol.20 (22), p.5685</ispartof><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-21a440d4c1498962ee19cf8722089a91d0d8ad28f81975cc46d60b01349896213</citedby><cites>FETCH-LOGICAL-c412t-21a440d4c1498962ee19cf8722089a91d0d8ad28f81975cc46d60b01349896213</cites><orcidid>0000-0002-6200-7764 ; 0000-0002-8757-9611 ; 0000-0002-6773-8662 ; 0000-0002-2918-1488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888582/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888582/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31766224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>André, Laurène M</creatorcontrib><creatorcontrib>van Cruchten, Remco T P</creatorcontrib><creatorcontrib>Willemse, Marieke</creatorcontrib><creatorcontrib>Bezstarosti, Karel</creatorcontrib><creatorcontrib>Demmers, Jeroen A A</creatorcontrib><creatorcontrib>van Agtmaal, Ellen L</creatorcontrib><creatorcontrib>Wansink, Derick G</creatorcontrib><creatorcontrib>Wieringa, Bé</creatorcontrib><title>Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) n Repeat</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG) repeat in and . The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM's most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing. We found that excision of the repeat restored the ability of cDM myoblasts to engage in myogenic fusion, preventing the ensuing myotubes from remaining immature. Although the cDM-typical epigenetic status of the DM1 locus and the expression of genes therein were not altered upon removal of the repeat, analyses at the transcriptome and proteome level revealed that early abnormalities in the temporal expression of differentiation regulators, myogenic progression markers, and alternative splicing patterns before and immediately after the onset of differentiation became normalized. Our observation that molecular and cellular features of cDM are reversible in vitro and can be corrected by repeat-directed genome editing in muscle progenitors, when already committed and poised for myogenic differentiation, is important information for the future development of gene therapy for different forms of myotonic dystrophy type 1 (DM1).</description><subject>Cell cycle</subject><subject>Cell Line</subject><subject>Chromatin</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>Differentiation</subject><subject>DNA</subject><subject>Dystrophy</subject><subject>Epigenesis, Genetic</subject><subject>Fetuses</subject><subject>Gene Editing</subject><subject>Gene expression</subject><subject>Genetic Therapy</subject><subject>Genomes</subject><subject>Humans</subject><subject>Kinases</subject><subject>Maturation</subject><subject>Morphology</subject><subject>Muscle Development</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Mutants</subject><subject>Myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Myoblasts - pathology</subject><subject>Myogenesis</subject><subject>Myotonic dystrophy</subject><subject>Myotonic Dystrophy - genetics</subject><subject>Myotonic Dystrophy - pathology</subject><subject>Myotonic Dystrophy - therapy</subject><subject>Myotonin-Protein Kinase - genetics</subject><subject>Myotubes</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>RNA processing</subject><subject>Skeletal muscle</subject><subject>Transcription factors</subject><subject>Trinucleotide Repeats</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1r3DAQxUVJaT7aW89F0EsC2VYaybJ8CYTNJi2ktIT0LLSyvKvFlhxJG-L_Pjabhm1OGub99JiZh9BnSr4xVpHvbtMlIACFkMU7dEQ5wIwQUR7s1YfoOKUNIcCgqD6gQ0ZLIQD4ERrurAmPNg7YeZzXFv8awsp6Z_CfGFZRdzg0eB781Mu6neQcJvlqSDmGfj1MrWWrU05YN9lGvHgyLrngp5-T4-Kp1762NT6d39-cYY_vbG91_ojeN7pN9tPLe4L-Xi_u5z9mt79vfs4vb2eGU8gzoJpzUnNDeSUrAdbSyjSyBCCy0hWtSS11DbKRtCoLY7ioBVkSynY4ZSfoYufbb5edrY31OepW9dF1Og4qaKf-V7xbq1V4VEJKWUgYDU5fDGJ42NqUVeeSsW2rvQ3bpIBRWXIiqRjRr2_QTdhGP643Umw8flEIMlLnO8rEkFK0zeswlKgpU7Wf6Yh_2V_gFf4XInsGjVuc1w</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>André, Laurène M</creator><creator>van Cruchten, Remco T P</creator><creator>Willemse, Marieke</creator><creator>Bezstarosti, Karel</creator><creator>Demmers, Jeroen A A</creator><creator>van Agtmaal, Ellen L</creator><creator>Wansink, Derick G</creator><creator>Wieringa, Bé</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6200-7764</orcidid><orcidid>https://orcid.org/0000-0002-8757-9611</orcidid><orcidid>https://orcid.org/0000-0002-6773-8662</orcidid><orcidid>https://orcid.org/0000-0002-2918-1488</orcidid></search><sort><creationdate>20191113</creationdate><title>Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) n Repeat</title><author>André, Laurène M ; van Cruchten, Remco T P ; Willemse, Marieke ; Bezstarosti, Karel ; Demmers, Jeroen A A ; van Agtmaal, Ellen L ; Wansink, Derick G ; Wieringa, Bé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-21a440d4c1498962ee19cf8722089a91d0d8ad28f81975cc46d60b01349896213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cell cycle</topic><topic>Cell Line</topic><topic>Chromatin</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>Differentiation</topic><topic>DNA</topic><topic>Dystrophy</topic><topic>Epigenesis, Genetic</topic><topic>Fetuses</topic><topic>Gene Editing</topic><topic>Gene expression</topic><topic>Genetic Therapy</topic><topic>Genomes</topic><topic>Humans</topic><topic>Kinases</topic><topic>Maturation</topic><topic>Morphology</topic><topic>Muscle Development</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Mutants</topic><topic>Myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Myoblasts - pathology</topic><topic>Myogenesis</topic><topic>Myotonic dystrophy</topic><topic>Myotonic Dystrophy - genetics</topic><topic>Myotonic Dystrophy - pathology</topic><topic>Myotonic Dystrophy - therapy</topic><topic>Myotonin-Protein Kinase - genetics</topic><topic>Myotubes</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>RNA processing</topic><topic>Skeletal muscle</topic><topic>Transcription factors</topic><topic>Trinucleotide Repeats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>André, Laurène M</creatorcontrib><creatorcontrib>van Cruchten, Remco T P</creatorcontrib><creatorcontrib>Willemse, Marieke</creatorcontrib><creatorcontrib>Bezstarosti, Karel</creatorcontrib><creatorcontrib>Demmers, Jeroen A A</creatorcontrib><creatorcontrib>van Agtmaal, Ellen L</creatorcontrib><creatorcontrib>Wansink, Derick G</creatorcontrib><creatorcontrib>Wieringa, Bé</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>André, Laurène M</au><au>van Cruchten, Remco T P</au><au>Willemse, Marieke</au><au>Bezstarosti, Karel</au><au>Demmers, Jeroen A A</au><au>van Agtmaal, Ellen L</au><au>Wansink, Derick G</au><au>Wieringa, Bé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) n Repeat</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-11-13</date><risdate>2019</risdate><volume>20</volume><issue>22</issue><spage>5685</spage><pages>5685-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG) repeat in and . The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM's most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing. We found that excision of the repeat restored the ability of cDM myoblasts to engage in myogenic fusion, preventing the ensuing myotubes from remaining immature. Although the cDM-typical epigenetic status of the DM1 locus and the expression of genes therein were not altered upon removal of the repeat, analyses at the transcriptome and proteome level revealed that early abnormalities in the temporal expression of differentiation regulators, myogenic progression markers, and alternative splicing patterns before and immediately after the onset of differentiation became normalized. Our observation that molecular and cellular features of cDM are reversible in vitro and can be corrected by repeat-directed genome editing in muscle progenitors, when already committed and poised for myogenic differentiation, is important information for the future development of gene therapy for different forms of myotonic dystrophy type 1 (DM1).</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31766224</pmid><doi>10.3390/ijms20225685</doi><orcidid>https://orcid.org/0000-0002-6200-7764</orcidid><orcidid>https://orcid.org/0000-0002-8757-9611</orcidid><orcidid>https://orcid.org/0000-0002-6773-8662</orcidid><orcidid>https://orcid.org/0000-0002-2918-1488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2019-11, Vol.20 (22), p.5685
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888582
source MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Cell cycle
Cell Line
Chromatin
CRISPR
Deoxyribonucleic acid
Differentiation
DNA
Dystrophy
Epigenesis, Genetic
Fetuses
Gene Editing
Gene expression
Genetic Therapy
Genomes
Humans
Kinases
Maturation
Morphology
Muscle Development
Muscles
Musculoskeletal system
Mutants
Myoblasts
Myoblasts - cytology
Myoblasts - metabolism
Myoblasts - pathology
Myogenesis
Myotonic dystrophy
Myotonic Dystrophy - genetics
Myotonic Dystrophy - pathology
Myotonic Dystrophy - therapy
Myotonin-Protein Kinase - genetics
Myotubes
Protein kinase
Proteins
RNA processing
Skeletal muscle
Transcription factors
Trinucleotide Repeats
title Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) n Repeat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A25%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20in%20the%20Myogenic%20Program%20of%20Congenital%20Myotonic%20Dystrophy%20Myoblasts%20after%20Excision%20of%20the%20Expanded%20(CTG)%20n%20Repeat&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Andr%C3%A9,%20Laur%C3%A8ne%20M&rft.date=2019-11-13&rft.volume=20&rft.issue=22&rft.spage=5685&rft.pages=5685-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20225685&rft_dat=%3Cproquest_pubme%3E2333255560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333255560&rft_id=info:pmid/31766224&rfr_iscdi=true