Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays

Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-10, Vol.12 (10), p.9922-9930
Hauptverfasser: Lee, Yoonhee, Trocchia, Scott M, Warren, Steven B, Young, Erik F, Vernick, Sefi, Shepard, Kenneth L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9930
container_issue 10
container_start_page 9922
container_title ACS nano
container_volume 12
creator Lee, Yoonhee
Trocchia, Scott M
Warren, Steven B
Young, Erik F
Vernick, Sefi
Shepard, Kenneth L
description Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to attach a single probe molecule to an individual device. In contrast, with noncovalent attachment approaches such as those based on van der Waals interactions, covalent attachment approaches generally deliver higher stability but have traditionally been more difficult to control, resulting in low yield. Here, we present a single-point-functionalization method for CNTFET arrays based on electrochemical control of a diazonium reaction to create sp3 defects, combined with a scalable spin-casting method for fabricating large arrays of devices on arbitrary substrates.  Attachment of probe DNA to the functionalized device enables single-molecule detection of DNA hybridization with complementary target, verifying the single-point functionalization. Overall, this method enables single-point defect generation with 80% yield.
doi_str_mv 10.1021/acsnano.8b03073
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6887518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114691038</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-413885d1a81b84967ec2a3553fb5d583fb1f146676ce79cf0554da552d47d3063</originalsourceid><addsrcrecordid>eNp1UUFLIzEUDsvKql3Pe5M5CjI1mUwymYsgpVVBVKgL3sKbTKYbSZOazAhd8L9vSmvRw57eB-973_fe-xD6RfCY4IJcgIoOnB-LBlNc0W_oiNSU51jw5-97zMghOo7xBWNWiYr_QIcUFxzzgh6h96nVqg9GgbXrbOJdH7y10FidzY1bWJ0_euP61HkDqxOYDU71xjuw5i9sQOa7bL4yLp9ATDwIjXf5fVqqHxqdzYy2bT7tuuSSPQVw0cTeh-wqBFjHn-igAxv1ya6O0O_Z9Glyk989XN9Oru5yKIu6z0tChWAtAUEaUda80qoAyhjtGtYykQrpSMl5xZWuatVhxsoWGCvasmop5nSELre6q6FZ6lalQwJYuQpmCWEtPRj5tePMH7nwb5ILUTEiksDZTiD410HHXi5NVDp9ymk_RFmQ5F8TTDfUiy1VBR9j0N3ehmC5CU3uQpO70NLE6eft9vyPlBLhfEtIk_LFDyF9P_5X7h9RDaXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114691038</pqid></control><display><type>article</type><title>Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays</title><source>ACS Publications</source><creator>Lee, Yoonhee ; Trocchia, Scott M ; Warren, Steven B ; Young, Erik F ; Vernick, Sefi ; Shepard, Kenneth L</creator><creatorcontrib>Lee, Yoonhee ; Trocchia, Scott M ; Warren, Steven B ; Young, Erik F ; Vernick, Sefi ; Shepard, Kenneth L</creatorcontrib><description>Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to attach a single probe molecule to an individual device. In contrast, with noncovalent attachment approaches such as those based on van der Waals interactions, covalent attachment approaches generally deliver higher stability but have traditionally been more difficult to control, resulting in low yield. Here, we present a single-point-functionalization method for CNTFET arrays based on electrochemical control of a diazonium reaction to create sp3 defects, combined with a scalable spin-casting method for fabricating large arrays of devices on arbitrary substrates.  Attachment of probe DNA to the functionalized device enables single-molecule detection of DNA hybridization with complementary target, verifying the single-point functionalization. Overall, this method enables single-point defect generation with 80% yield.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b03073</identifier><identifier>PMID: 30260623</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-10, Vol.12 (10), p.9922-9930</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-413885d1a81b84967ec2a3553fb5d583fb1f146676ce79cf0554da552d47d3063</citedby><cites>FETCH-LOGICAL-a429t-413885d1a81b84967ec2a3553fb5d583fb1f146676ce79cf0554da552d47d3063</cites><orcidid>0000-0002-7553-5208 ; 0000-0003-0680-7668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b03073$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b03073$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30260623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yoonhee</creatorcontrib><creatorcontrib>Trocchia, Scott M</creatorcontrib><creatorcontrib>Warren, Steven B</creatorcontrib><creatorcontrib>Young, Erik F</creatorcontrib><creatorcontrib>Vernick, Sefi</creatorcontrib><creatorcontrib>Shepard, Kenneth L</creatorcontrib><title>Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to attach a single probe molecule to an individual device. In contrast, with noncovalent attachment approaches such as those based on van der Waals interactions, covalent attachment approaches generally deliver higher stability but have traditionally been more difficult to control, resulting in low yield. Here, we present a single-point-functionalization method for CNTFET arrays based on electrochemical control of a diazonium reaction to create sp3 defects, combined with a scalable spin-casting method for fabricating large arrays of devices on arbitrary substrates.  Attachment of probe DNA to the functionalized device enables single-molecule detection of DNA hybridization with complementary target, verifying the single-point functionalization. Overall, this method enables single-point defect generation with 80% yield.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UUFLIzEUDsvKql3Pe5M5CjI1mUwymYsgpVVBVKgL3sKbTKYbSZOazAhd8L9vSmvRw57eB-973_fe-xD6RfCY4IJcgIoOnB-LBlNc0W_oiNSU51jw5-97zMghOo7xBWNWiYr_QIcUFxzzgh6h96nVqg9GgbXrbOJdH7y10FidzY1bWJ0_euP61HkDqxOYDU71xjuw5i9sQOa7bL4yLp9ATDwIjXf5fVqqHxqdzYy2bT7tuuSSPQVw0cTeh-wqBFjHn-igAxv1ya6O0O_Z9Glyk989XN9Oru5yKIu6z0tChWAtAUEaUda80qoAyhjtGtYykQrpSMl5xZWuatVhxsoWGCvasmop5nSELre6q6FZ6lalQwJYuQpmCWEtPRj5tePMH7nwb5ILUTEiksDZTiD410HHXi5NVDp9ymk_RFmQ5F8TTDfUiy1VBR9j0N3ehmC5CU3uQpO70NLE6eft9vyPlBLhfEtIk_LFDyF9P_5X7h9RDaXQ</recordid><startdate>20181023</startdate><enddate>20181023</enddate><creator>Lee, Yoonhee</creator><creator>Trocchia, Scott M</creator><creator>Warren, Steven B</creator><creator>Young, Erik F</creator><creator>Vernick, Sefi</creator><creator>Shepard, Kenneth L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7553-5208</orcidid><orcidid>https://orcid.org/0000-0003-0680-7668</orcidid></search><sort><creationdate>20181023</creationdate><title>Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays</title><author>Lee, Yoonhee ; Trocchia, Scott M ; Warren, Steven B ; Young, Erik F ; Vernick, Sefi ; Shepard, Kenneth L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-413885d1a81b84967ec2a3553fb5d583fb1f146676ce79cf0554da552d47d3063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yoonhee</creatorcontrib><creatorcontrib>Trocchia, Scott M</creatorcontrib><creatorcontrib>Warren, Steven B</creatorcontrib><creatorcontrib>Young, Erik F</creatorcontrib><creatorcontrib>Vernick, Sefi</creatorcontrib><creatorcontrib>Shepard, Kenneth L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yoonhee</au><au>Trocchia, Scott M</au><au>Warren, Steven B</au><au>Young, Erik F</au><au>Vernick, Sefi</au><au>Shepard, Kenneth L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-10-23</date><risdate>2018</risdate><volume>12</volume><issue>10</issue><spage>9922</spage><epage>9930</epage><pages>9922-9930</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to attach a single probe molecule to an individual device. In contrast, with noncovalent attachment approaches such as those based on van der Waals interactions, covalent attachment approaches generally deliver higher stability but have traditionally been more difficult to control, resulting in low yield. Here, we present a single-point-functionalization method for CNTFET arrays based on electrochemical control of a diazonium reaction to create sp3 defects, combined with a scalable spin-casting method for fabricating large arrays of devices on arbitrary substrates.  Attachment of probe DNA to the functionalized device enables single-molecule detection of DNA hybridization with complementary target, verifying the single-point functionalization. Overall, this method enables single-point defect generation with 80% yield.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30260623</pmid><doi>10.1021/acsnano.8b03073</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7553-5208</orcidid><orcidid>https://orcid.org/0000-0003-0680-7668</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-10, Vol.12 (10), p.9922-9930
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6887518
source ACS Publications
title Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Controllable%20Single-Point%20Covalent%20Functionalization%20of%20Spin-Cast%20Carbon-Nanotube%20Field-Effect%20Transistor%20Arrays&rft.jtitle=ACS%20nano&rft.au=Lee,%20Yoonhee&rft.date=2018-10-23&rft.volume=12&rft.issue=10&rft.spage=9922&rft.epage=9930&rft.pages=9922-9930&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b03073&rft_dat=%3Cproquest_pubme%3E2114691038%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114691038&rft_id=info:pmid/30260623&rfr_iscdi=true