Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade
Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as w...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2019-02, Vol.50 (2), p.477-492.e8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492.e8 |
---|---|
container_issue | 2 |
container_start_page | 477 |
container_title | Immunity (Cambridge, Mass.) |
container_volume | 50 |
creator | Pai, Chien-Chun Steven Huang, John T. Lu, Xiaoqing Simons, Donald M. Park, Chanhyuk Chang, Anthony Tamaki, Whitney Liu, Eric Roybal, Kole T. Seagal, Jane Chen, Mingyi Hagihara, Katsunobu Wei, Xiao X. DuPage, Michel Kwek, Serena S. Oh, David Y. Daud, Adil Tsai, Katy K. Wu, Clint Zhang, Li Fasso, Marcella Sachidanandam, Ravi Jayaprakash, Anitha Lin, Ingrid Casbon, Amy-Jo Kinsbury, Gillian A. Fong, Lawrence |
description | Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies.
[Display omitted]
•Combination checkpoint blockade leads to impaired efficacy with low tumor burden•This impairment results from IFN-γ-mediated deletion of tumor-reactive T cells•AICD is an immune-intrinsic mechanism of therapeutic resistance to checkpoint blockade
Although immune checkpoint blockades are being combined to enhance anti-tumor efficacy, Pai et al. find that this approach can lead to therapy resistance in the low tumor burden setting. Potent immunotherapy in this setting overdrives tumor-reactive T cells, leading to their death. Optimal immunotherapy could therefore be disease-context dependent. |
doi_str_mv | 10.1016/j.immuni.2019.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6886475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761319300299</els_id><sourcerecordid>2184135276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-6334eb4da24351be6c9629fc0cce1b1d3bd981974c2cb6b392b35be50981362f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EoqXwBghZYsMmwY4dJ9kgQfgbqRISDGvLdm4YTxM72E6lrnkk3oNnwtMp5WfBylf2d4_vPQehx5SUlFDxfF_aeV6dLStCu5LQkhBxB51S0jUFpy25e6gbXjSCshP0IMY9IZTXHbmPThhpWEO5OEXf-sk7NeHXMEGy3mE_4u06-1B8WsDY0Rq8xT1MU8T6Cm9cgjBC8K748R333uU64u0OglpgTRn-CNHGpJwBnHwmZm2duhbeHKYF3O_AXCzeuoRfTd5cqAEeonujmiI8ujnP0Oe3b7b9--L8w7tN__K8MLyjqRCMcdB8UBVnNdUgTCeqbjTEGKCaDkwPXUu7hpvKaKFZV2lWa6hJvmWiGtkZenHUXVY9w2DApaAmuQQ7q3AlvbLy7xdnd_KLv5SibQVv6izw7EYg-K8rxCRnG002Rznwa5QVbTllddWIjD79B937NWSnr6m6rSsi2kzxI2WCjzHAeDsMJfKQstzLY8rykLIkVOaUc9uTPxe5bfoV6-9NIdt5aSHIaCzkUAYbwCQ5ePv_H34CAb-9bQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185852068</pqid></control><display><type>article</type><title>Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pai, Chien-Chun Steven ; Huang, John T. ; Lu, Xiaoqing ; Simons, Donald M. ; Park, Chanhyuk ; Chang, Anthony ; Tamaki, Whitney ; Liu, Eric ; Roybal, Kole T. ; Seagal, Jane ; Chen, Mingyi ; Hagihara, Katsunobu ; Wei, Xiao X. ; DuPage, Michel ; Kwek, Serena S. ; Oh, David Y. ; Daud, Adil ; Tsai, Katy K. ; Wu, Clint ; Zhang, Li ; Fasso, Marcella ; Sachidanandam, Ravi ; Jayaprakash, Anitha ; Lin, Ingrid ; Casbon, Amy-Jo ; Kinsbury, Gillian A. ; Fong, Lawrence</creator><creatorcontrib>Pai, Chien-Chun Steven ; Huang, John T. ; Lu, Xiaoqing ; Simons, Donald M. ; Park, Chanhyuk ; Chang, Anthony ; Tamaki, Whitney ; Liu, Eric ; Roybal, Kole T. ; Seagal, Jane ; Chen, Mingyi ; Hagihara, Katsunobu ; Wei, Xiao X. ; DuPage, Michel ; Kwek, Serena S. ; Oh, David Y. ; Daud, Adil ; Tsai, Katy K. ; Wu, Clint ; Zhang, Li ; Fasso, Marcella ; Sachidanandam, Ravi ; Jayaprakash, Anitha ; Lin, Ingrid ; Casbon, Amy-Jo ; Kinsbury, Gillian A. ; Fong, Lawrence</creatorcontrib><description>Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies.
[Display omitted]
•Combination checkpoint blockade leads to impaired efficacy with low tumor burden•This impairment results from IFN-γ-mediated deletion of tumor-reactive T cells•AICD is an immune-intrinsic mechanism of therapeutic resistance to checkpoint blockade
Although immune checkpoint blockades are being combined to enhance anti-tumor efficacy, Pai et al. find that this approach can lead to therapy resistance in the low tumor burden setting. Potent immunotherapy in this setting overdrives tumor-reactive T cells, leading to their death. Optimal immunotherapy could therefore be disease-context dependent.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2019.01.006</identifier><identifier>PMID: 30737146</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>activation-induced cell death ; Animals ; anti-CTLA-4 ; anti-PD-1 ; Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - pharmacology ; Antigens ; Apoptosis ; cancer ; Cancer therapies ; Cell death ; Cell Line, Tumor ; Clinical outcomes ; Clinical trials ; Clonal deletion ; Clonal Deletion - drug effects ; Clonal Deletion - immunology ; CTLA-4 Antigen - antagonists & inhibitors ; CTLA-4 Antigen - immunology ; CTLA-4 Antigen - metabolism ; CTLA-4 protein ; Drug Resistance, Neoplasm - drug effects ; Drug Resistance, Neoplasm - immunology ; Humans ; IFN-γ ; Immune checkpoint ; Immune status ; Immunity ; Immunotherapy ; Interferon ; Interferon-gamma - immunology ; Interferon-gamma - metabolism ; Interferon-gamma - pharmacology ; Lymphocytes ; Lymphocytes T ; Male ; Melanoma ; Metastasis ; Mice, Inbred C57BL ; Mice, Knockout ; Mutation ; Neoplasms, Experimental - drug therapy ; Neoplasms, Experimental - immunology ; Neoplasms, Experimental - metabolism ; PD-1 protein ; Programmed Cell Death 1 Receptor - antagonists & inhibitors ; Programmed Cell Death 1 Receptor - immunology ; Programmed Cell Death 1 Receptor - metabolism ; T-Lymphocytes - drug effects ; T-Lymphocytes - immunology ; T-Lymphocytes - metabolism ; Tumor Burden - drug effects ; Tumor Burden - immunology ; Tumors ; γ-Interferon</subject><ispartof>Immunity (Cambridge, Mass.), 2019-02, Vol.50 (2), p.477-492.e8</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 19, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-6334eb4da24351be6c9629fc0cce1b1d3bd981974c2cb6b392b35be50981362f3</citedby><cites>FETCH-LOGICAL-c491t-6334eb4da24351be6c9629fc0cce1b1d3bd981974c2cb6b392b35be50981362f3</cites><orcidid>0000-0002-6428-428X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761319300299$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30737146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pai, Chien-Chun Steven</creatorcontrib><creatorcontrib>Huang, John T.</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><creatorcontrib>Simons, Donald M.</creatorcontrib><creatorcontrib>Park, Chanhyuk</creatorcontrib><creatorcontrib>Chang, Anthony</creatorcontrib><creatorcontrib>Tamaki, Whitney</creatorcontrib><creatorcontrib>Liu, Eric</creatorcontrib><creatorcontrib>Roybal, Kole T.</creatorcontrib><creatorcontrib>Seagal, Jane</creatorcontrib><creatorcontrib>Chen, Mingyi</creatorcontrib><creatorcontrib>Hagihara, Katsunobu</creatorcontrib><creatorcontrib>Wei, Xiao X.</creatorcontrib><creatorcontrib>DuPage, Michel</creatorcontrib><creatorcontrib>Kwek, Serena S.</creatorcontrib><creatorcontrib>Oh, David Y.</creatorcontrib><creatorcontrib>Daud, Adil</creatorcontrib><creatorcontrib>Tsai, Katy K.</creatorcontrib><creatorcontrib>Wu, Clint</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Fasso, Marcella</creatorcontrib><creatorcontrib>Sachidanandam, Ravi</creatorcontrib><creatorcontrib>Jayaprakash, Anitha</creatorcontrib><creatorcontrib>Lin, Ingrid</creatorcontrib><creatorcontrib>Casbon, Amy-Jo</creatorcontrib><creatorcontrib>Kinsbury, Gillian A.</creatorcontrib><creatorcontrib>Fong, Lawrence</creatorcontrib><title>Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies.
[Display omitted]
•Combination checkpoint blockade leads to impaired efficacy with low tumor burden•This impairment results from IFN-γ-mediated deletion of tumor-reactive T cells•AICD is an immune-intrinsic mechanism of therapeutic resistance to checkpoint blockade
Although immune checkpoint blockades are being combined to enhance anti-tumor efficacy, Pai et al. find that this approach can lead to therapy resistance in the low tumor burden setting. Potent immunotherapy in this setting overdrives tumor-reactive T cells, leading to their death. Optimal immunotherapy could therefore be disease-context dependent.</description><subject>activation-induced cell death</subject><subject>Animals</subject><subject>anti-CTLA-4</subject><subject>anti-PD-1</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>cancer</subject><subject>Cancer therapies</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Clonal deletion</subject><subject>Clonal Deletion - drug effects</subject><subject>Clonal Deletion - immunology</subject><subject>CTLA-4 Antigen - antagonists & inhibitors</subject><subject>CTLA-4 Antigen - immunology</subject><subject>CTLA-4 Antigen - metabolism</subject><subject>CTLA-4 protein</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Resistance, Neoplasm - immunology</subject><subject>Humans</subject><subject>IFN-γ</subject><subject>Immune checkpoint</subject><subject>Immune status</subject><subject>Immunity</subject><subject>Immunotherapy</subject><subject>Interferon</subject><subject>Interferon-gamma - immunology</subject><subject>Interferon-gamma - metabolism</subject><subject>Interferon-gamma - pharmacology</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Melanoma</subject><subject>Metastasis</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mutation</subject><subject>Neoplasms, Experimental - drug therapy</subject><subject>Neoplasms, Experimental - immunology</subject><subject>Neoplasms, Experimental - metabolism</subject><subject>PD-1 protein</subject><subject>Programmed Cell Death 1 Receptor - antagonists & inhibitors</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>Programmed Cell Death 1 Receptor - metabolism</subject><subject>T-Lymphocytes - drug effects</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - metabolism</subject><subject>Tumor Burden - drug effects</subject><subject>Tumor Burden - immunology</subject><subject>Tumors</subject><subject>γ-Interferon</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EoqXwBghZYsMmwY4dJ9kgQfgbqRISDGvLdm4YTxM72E6lrnkk3oNnwtMp5WfBylf2d4_vPQehx5SUlFDxfF_aeV6dLStCu5LQkhBxB51S0jUFpy25e6gbXjSCshP0IMY9IZTXHbmPThhpWEO5OEXf-sk7NeHXMEGy3mE_4u06-1B8WsDY0Rq8xT1MU8T6Cm9cgjBC8K748R333uU64u0OglpgTRn-CNHGpJwBnHwmZm2duhbeHKYF3O_AXCzeuoRfTd5cqAEeonujmiI8ujnP0Oe3b7b9--L8w7tN__K8MLyjqRCMcdB8UBVnNdUgTCeqbjTEGKCaDkwPXUu7hpvKaKFZV2lWa6hJvmWiGtkZenHUXVY9w2DApaAmuQQ7q3AlvbLy7xdnd_KLv5SibQVv6izw7EYg-K8rxCRnG002Rznwa5QVbTllddWIjD79B937NWSnr6m6rSsi2kzxI2WCjzHAeDsMJfKQstzLY8rykLIkVOaUc9uTPxe5bfoV6-9NIdt5aSHIaCzkUAYbwCQ5ePv_H34CAb-9bQ</recordid><startdate>20190219</startdate><enddate>20190219</enddate><creator>Pai, Chien-Chun Steven</creator><creator>Huang, John T.</creator><creator>Lu, Xiaoqing</creator><creator>Simons, Donald M.</creator><creator>Park, Chanhyuk</creator><creator>Chang, Anthony</creator><creator>Tamaki, Whitney</creator><creator>Liu, Eric</creator><creator>Roybal, Kole T.</creator><creator>Seagal, Jane</creator><creator>Chen, Mingyi</creator><creator>Hagihara, Katsunobu</creator><creator>Wei, Xiao X.</creator><creator>DuPage, Michel</creator><creator>Kwek, Serena S.</creator><creator>Oh, David Y.</creator><creator>Daud, Adil</creator><creator>Tsai, Katy K.</creator><creator>Wu, Clint</creator><creator>Zhang, Li</creator><creator>Fasso, Marcella</creator><creator>Sachidanandam, Ravi</creator><creator>Jayaprakash, Anitha</creator><creator>Lin, Ingrid</creator><creator>Casbon, Amy-Jo</creator><creator>Kinsbury, Gillian A.</creator><creator>Fong, Lawrence</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6428-428X</orcidid></search><sort><creationdate>20190219</creationdate><title>Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade</title><author>Pai, Chien-Chun Steven ; Huang, John T. ; Lu, Xiaoqing ; Simons, Donald M. ; Park, Chanhyuk ; Chang, Anthony ; Tamaki, Whitney ; Liu, Eric ; Roybal, Kole T. ; Seagal, Jane ; Chen, Mingyi ; Hagihara, Katsunobu ; Wei, Xiao X. ; DuPage, Michel ; Kwek, Serena S. ; Oh, David Y. ; Daud, Adil ; Tsai, Katy K. ; Wu, Clint ; Zhang, Li ; Fasso, Marcella ; Sachidanandam, Ravi ; Jayaprakash, Anitha ; Lin, Ingrid ; Casbon, Amy-Jo ; Kinsbury, Gillian A. ; Fong, Lawrence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-6334eb4da24351be6c9629fc0cce1b1d3bd981974c2cb6b392b35be50981362f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>activation-induced cell death</topic><topic>Animals</topic><topic>anti-CTLA-4</topic><topic>anti-PD-1</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>cancer</topic><topic>Cancer therapies</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Clonal deletion</topic><topic>Clonal Deletion - drug effects</topic><topic>Clonal Deletion - immunology</topic><topic>CTLA-4 Antigen - antagonists & inhibitors</topic><topic>CTLA-4 Antigen - immunology</topic><topic>CTLA-4 Antigen - metabolism</topic><topic>CTLA-4 protein</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Resistance, Neoplasm - immunology</topic><topic>Humans</topic><topic>IFN-γ</topic><topic>Immune checkpoint</topic><topic>Immune status</topic><topic>Immunity</topic><topic>Immunotherapy</topic><topic>Interferon</topic><topic>Interferon-gamma - immunology</topic><topic>Interferon-gamma - metabolism</topic><topic>Interferon-gamma - pharmacology</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Melanoma</topic><topic>Metastasis</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mutation</topic><topic>Neoplasms, Experimental - drug therapy</topic><topic>Neoplasms, Experimental - immunology</topic><topic>Neoplasms, Experimental - metabolism</topic><topic>PD-1 protein</topic><topic>Programmed Cell Death 1 Receptor - antagonists & inhibitors</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>Programmed Cell Death 1 Receptor - metabolism</topic><topic>T-Lymphocytes - drug effects</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - metabolism</topic><topic>Tumor Burden - drug effects</topic><topic>Tumor Burden - immunology</topic><topic>Tumors</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pai, Chien-Chun Steven</creatorcontrib><creatorcontrib>Huang, John T.</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><creatorcontrib>Simons, Donald M.</creatorcontrib><creatorcontrib>Park, Chanhyuk</creatorcontrib><creatorcontrib>Chang, Anthony</creatorcontrib><creatorcontrib>Tamaki, Whitney</creatorcontrib><creatorcontrib>Liu, Eric</creatorcontrib><creatorcontrib>Roybal, Kole T.</creatorcontrib><creatorcontrib>Seagal, Jane</creatorcontrib><creatorcontrib>Chen, Mingyi</creatorcontrib><creatorcontrib>Hagihara, Katsunobu</creatorcontrib><creatorcontrib>Wei, Xiao X.</creatorcontrib><creatorcontrib>DuPage, Michel</creatorcontrib><creatorcontrib>Kwek, Serena S.</creatorcontrib><creatorcontrib>Oh, David Y.</creatorcontrib><creatorcontrib>Daud, Adil</creatorcontrib><creatorcontrib>Tsai, Katy K.</creatorcontrib><creatorcontrib>Wu, Clint</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Fasso, Marcella</creatorcontrib><creatorcontrib>Sachidanandam, Ravi</creatorcontrib><creatorcontrib>Jayaprakash, Anitha</creatorcontrib><creatorcontrib>Lin, Ingrid</creatorcontrib><creatorcontrib>Casbon, Amy-Jo</creatorcontrib><creatorcontrib>Kinsbury, Gillian A.</creatorcontrib><creatorcontrib>Fong, Lawrence</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pai, Chien-Chun Steven</au><au>Huang, John T.</au><au>Lu, Xiaoqing</au><au>Simons, Donald M.</au><au>Park, Chanhyuk</au><au>Chang, Anthony</au><au>Tamaki, Whitney</au><au>Liu, Eric</au><au>Roybal, Kole T.</au><au>Seagal, Jane</au><au>Chen, Mingyi</au><au>Hagihara, Katsunobu</au><au>Wei, Xiao X.</au><au>DuPage, Michel</au><au>Kwek, Serena S.</au><au>Oh, David Y.</au><au>Daud, Adil</au><au>Tsai, Katy K.</au><au>Wu, Clint</au><au>Zhang, Li</au><au>Fasso, Marcella</au><au>Sachidanandam, Ravi</au><au>Jayaprakash, Anitha</au><au>Lin, Ingrid</au><au>Casbon, Amy-Jo</au><au>Kinsbury, Gillian A.</au><au>Fong, Lawrence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2019-02-19</date><risdate>2019</risdate><volume>50</volume><issue>2</issue><spage>477</spage><epage>492.e8</epage><pages>477-492.e8</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies.
[Display omitted]
•Combination checkpoint blockade leads to impaired efficacy with low tumor burden•This impairment results from IFN-γ-mediated deletion of tumor-reactive T cells•AICD is an immune-intrinsic mechanism of therapeutic resistance to checkpoint blockade
Although immune checkpoint blockades are being combined to enhance anti-tumor efficacy, Pai et al. find that this approach can lead to therapy resistance in the low tumor burden setting. Potent immunotherapy in this setting overdrives tumor-reactive T cells, leading to their death. Optimal immunotherapy could therefore be disease-context dependent.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30737146</pmid><doi>10.1016/j.immuni.2019.01.006</doi><orcidid>https://orcid.org/0000-0002-6428-428X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7613 |
ispartof | Immunity (Cambridge, Mass.), 2019-02, Vol.50 (2), p.477-492.e8 |
issn | 1074-7613 1097-4180 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6886475 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals |
subjects | activation-induced cell death Animals anti-CTLA-4 anti-PD-1 Antibodies, Monoclonal - immunology Antibodies, Monoclonal - pharmacology Antigens Apoptosis cancer Cancer therapies Cell death Cell Line, Tumor Clinical outcomes Clinical trials Clonal deletion Clonal Deletion - drug effects Clonal Deletion - immunology CTLA-4 Antigen - antagonists & inhibitors CTLA-4 Antigen - immunology CTLA-4 Antigen - metabolism CTLA-4 protein Drug Resistance, Neoplasm - drug effects Drug Resistance, Neoplasm - immunology Humans IFN-γ Immune checkpoint Immune status Immunity Immunotherapy Interferon Interferon-gamma - immunology Interferon-gamma - metabolism Interferon-gamma - pharmacology Lymphocytes Lymphocytes T Male Melanoma Metastasis Mice, Inbred C57BL Mice, Knockout Mutation Neoplasms, Experimental - drug therapy Neoplasms, Experimental - immunology Neoplasms, Experimental - metabolism PD-1 protein Programmed Cell Death 1 Receptor - antagonists & inhibitors Programmed Cell Death 1 Receptor - immunology Programmed Cell Death 1 Receptor - metabolism T-Lymphocytes - drug effects T-Lymphocytes - immunology T-Lymphocytes - metabolism Tumor Burden - drug effects Tumor Burden - immunology Tumors γ-Interferon |
title | Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clonal%20Deletion%20of%20Tumor-Specific%20T%20Cells%20by%20Interferon-%CE%B3%20Confers%20Therapeutic%20Resistance%20to%20Combination%20Immune%20Checkpoint%20Blockade&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Pai,%20Chien-Chun%20Steven&rft.date=2019-02-19&rft.volume=50&rft.issue=2&rft.spage=477&rft.epage=492.e8&rft.pages=477-492.e8&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2019.01.006&rft_dat=%3Cproquest_pubme%3E2184135276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185852068&rft_id=info:pmid/30737146&rft_els_id=S1074761319300299&rfr_iscdi=true |