Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade

Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity (Cambridge, Mass.) Mass.), 2019-02, Vol.50 (2), p.477-492.e8
Hauptverfasser: Pai, Chien-Chun Steven, Huang, John T., Lu, Xiaoqing, Simons, Donald M., Park, Chanhyuk, Chang, Anthony, Tamaki, Whitney, Liu, Eric, Roybal, Kole T., Seagal, Jane, Chen, Mingyi, Hagihara, Katsunobu, Wei, Xiao X., DuPage, Michel, Kwek, Serena S., Oh, David Y., Daud, Adil, Tsai, Katy K., Wu, Clint, Zhang, Li, Fasso, Marcella, Sachidanandam, Ravi, Jayaprakash, Anitha, Lin, Ingrid, Casbon, Amy-Jo, Kinsbury, Gillian A., Fong, Lawrence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 492.e8
container_issue 2
container_start_page 477
container_title Immunity (Cambridge, Mass.)
container_volume 50
creator Pai, Chien-Chun Steven
Huang, John T.
Lu, Xiaoqing
Simons, Donald M.
Park, Chanhyuk
Chang, Anthony
Tamaki, Whitney
Liu, Eric
Roybal, Kole T.
Seagal, Jane
Chen, Mingyi
Hagihara, Katsunobu
Wei, Xiao X.
DuPage, Michel
Kwek, Serena S.
Oh, David Y.
Daud, Adil
Tsai, Katy K.
Wu, Clint
Zhang, Li
Fasso, Marcella
Sachidanandam, Ravi
Jayaprakash, Anitha
Lin, Ingrid
Casbon, Amy-Jo
Kinsbury, Gillian A.
Fong, Lawrence
description Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies. [Display omitted] •Combination checkpoint blockade leads to impaired efficacy with low tumor burden•This impairment results from IFN-γ-mediated deletion of tumor-reactive T cells•AICD is an immune-intrinsic mechanism of therapeutic resistance to checkpoint blockade Although immune checkpoint blockades are being combined to enhance anti-tumor efficacy, Pai et al. find that this approach can lead to therapy resistance in the low tumor burden setting. Potent immunotherapy in this setting overdrives tumor-reactive T cells, leading to their death. Optimal immunotherapy could therefore be disease-context dependent.
doi_str_mv 10.1016/j.immuni.2019.01.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6886475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761319300299</els_id><sourcerecordid>2184135276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-6334eb4da24351be6c9629fc0cce1b1d3bd981974c2cb6b392b35be50981362f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EoqXwBghZYsMmwY4dJ9kgQfgbqRISDGvLdm4YTxM72E6lrnkk3oNnwtMp5WfBylf2d4_vPQehx5SUlFDxfF_aeV6dLStCu5LQkhBxB51S0jUFpy25e6gbXjSCshP0IMY9IZTXHbmPThhpWEO5OEXf-sk7NeHXMEGy3mE_4u06-1B8WsDY0Rq8xT1MU8T6Cm9cgjBC8K748R333uU64u0OglpgTRn-CNHGpJwBnHwmZm2duhbeHKYF3O_AXCzeuoRfTd5cqAEeonujmiI8ujnP0Oe3b7b9--L8w7tN__K8MLyjqRCMcdB8UBVnNdUgTCeqbjTEGKCaDkwPXUu7hpvKaKFZV2lWa6hJvmWiGtkZenHUXVY9w2DApaAmuQQ7q3AlvbLy7xdnd_KLv5SibQVv6izw7EYg-K8rxCRnG002Rznwa5QVbTllddWIjD79B937NWSnr6m6rSsi2kzxI2WCjzHAeDsMJfKQstzLY8rykLIkVOaUc9uTPxe5bfoV6-9NIdt5aSHIaCzkUAYbwCQ5ePv_H34CAb-9bQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185852068</pqid></control><display><type>article</type><title>Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pai, Chien-Chun Steven ; Huang, John T. ; Lu, Xiaoqing ; Simons, Donald M. ; Park, Chanhyuk ; Chang, Anthony ; Tamaki, Whitney ; Liu, Eric ; Roybal, Kole T. ; Seagal, Jane ; Chen, Mingyi ; Hagihara, Katsunobu ; Wei, Xiao X. ; DuPage, Michel ; Kwek, Serena S. ; Oh, David Y. ; Daud, Adil ; Tsai, Katy K. ; Wu, Clint ; Zhang, Li ; Fasso, Marcella ; Sachidanandam, Ravi ; Jayaprakash, Anitha ; Lin, Ingrid ; Casbon, Amy-Jo ; Kinsbury, Gillian A. ; Fong, Lawrence</creator><creatorcontrib>Pai, Chien-Chun Steven ; Huang, John T. ; Lu, Xiaoqing ; Simons, Donald M. ; Park, Chanhyuk ; Chang, Anthony ; Tamaki, Whitney ; Liu, Eric ; Roybal, Kole T. ; Seagal, Jane ; Chen, Mingyi ; Hagihara, Katsunobu ; Wei, Xiao X. ; DuPage, Michel ; Kwek, Serena S. ; Oh, David Y. ; Daud, Adil ; Tsai, Katy K. ; Wu, Clint ; Zhang, Li ; Fasso, Marcella ; Sachidanandam, Ravi ; Jayaprakash, Anitha ; Lin, Ingrid ; Casbon, Amy-Jo ; Kinsbury, Gillian A. ; Fong, Lawrence</creatorcontrib><description>Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies. [Display omitted] •Combination checkpoint blockade leads to impaired efficacy with low tumor burden•This impairment results from IFN-γ-mediated deletion of tumor-reactive T cells•AICD is an immune-intrinsic mechanism of therapeutic resistance to checkpoint blockade Although immune checkpoint blockades are being combined to enhance anti-tumor efficacy, Pai et al. find that this approach can lead to therapy resistance in the low tumor burden setting. Potent immunotherapy in this setting overdrives tumor-reactive T cells, leading to their death. Optimal immunotherapy could therefore be disease-context dependent.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2019.01.006</identifier><identifier>PMID: 30737146</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>activation-induced cell death ; Animals ; anti-CTLA-4 ; anti-PD-1 ; Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - pharmacology ; Antigens ; Apoptosis ; cancer ; Cancer therapies ; Cell death ; Cell Line, Tumor ; Clinical outcomes ; Clinical trials ; Clonal deletion ; Clonal Deletion - drug effects ; Clonal Deletion - immunology ; CTLA-4 Antigen - antagonists &amp; inhibitors ; CTLA-4 Antigen - immunology ; CTLA-4 Antigen - metabolism ; CTLA-4 protein ; Drug Resistance, Neoplasm - drug effects ; Drug Resistance, Neoplasm - immunology ; Humans ; IFN-γ ; Immune checkpoint ; Immune status ; Immunity ; Immunotherapy ; Interferon ; Interferon-gamma - immunology ; Interferon-gamma - metabolism ; Interferon-gamma - pharmacology ; Lymphocytes ; Lymphocytes T ; Male ; Melanoma ; Metastasis ; Mice, Inbred C57BL ; Mice, Knockout ; Mutation ; Neoplasms, Experimental - drug therapy ; Neoplasms, Experimental - immunology ; Neoplasms, Experimental - metabolism ; PD-1 protein ; Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors ; Programmed Cell Death 1 Receptor - immunology ; Programmed Cell Death 1 Receptor - metabolism ; T-Lymphocytes - drug effects ; T-Lymphocytes - immunology ; T-Lymphocytes - metabolism ; Tumor Burden - drug effects ; Tumor Burden - immunology ; Tumors ; γ-Interferon</subject><ispartof>Immunity (Cambridge, Mass.), 2019-02, Vol.50 (2), p.477-492.e8</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 19, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-6334eb4da24351be6c9629fc0cce1b1d3bd981974c2cb6b392b35be50981362f3</citedby><cites>FETCH-LOGICAL-c491t-6334eb4da24351be6c9629fc0cce1b1d3bd981974c2cb6b392b35be50981362f3</cites><orcidid>0000-0002-6428-428X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761319300299$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30737146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pai, Chien-Chun Steven</creatorcontrib><creatorcontrib>Huang, John T.</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><creatorcontrib>Simons, Donald M.</creatorcontrib><creatorcontrib>Park, Chanhyuk</creatorcontrib><creatorcontrib>Chang, Anthony</creatorcontrib><creatorcontrib>Tamaki, Whitney</creatorcontrib><creatorcontrib>Liu, Eric</creatorcontrib><creatorcontrib>Roybal, Kole T.</creatorcontrib><creatorcontrib>Seagal, Jane</creatorcontrib><creatorcontrib>Chen, Mingyi</creatorcontrib><creatorcontrib>Hagihara, Katsunobu</creatorcontrib><creatorcontrib>Wei, Xiao X.</creatorcontrib><creatorcontrib>DuPage, Michel</creatorcontrib><creatorcontrib>Kwek, Serena S.</creatorcontrib><creatorcontrib>Oh, David Y.</creatorcontrib><creatorcontrib>Daud, Adil</creatorcontrib><creatorcontrib>Tsai, Katy K.</creatorcontrib><creatorcontrib>Wu, Clint</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Fasso, Marcella</creatorcontrib><creatorcontrib>Sachidanandam, Ravi</creatorcontrib><creatorcontrib>Jayaprakash, Anitha</creatorcontrib><creatorcontrib>Lin, Ingrid</creatorcontrib><creatorcontrib>Casbon, Amy-Jo</creatorcontrib><creatorcontrib>Kinsbury, Gillian A.</creatorcontrib><creatorcontrib>Fong, Lawrence</creatorcontrib><title>Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies. [Display omitted] •Combination checkpoint blockade leads to impaired efficacy with low tumor burden•This impairment results from IFN-γ-mediated deletion of tumor-reactive T cells•AICD is an immune-intrinsic mechanism of therapeutic resistance to checkpoint blockade Although immune checkpoint blockades are being combined to enhance anti-tumor efficacy, Pai et al. find that this approach can lead to therapy resistance in the low tumor burden setting. Potent immunotherapy in this setting overdrives tumor-reactive T cells, leading to their death. Optimal immunotherapy could therefore be disease-context dependent.</description><subject>activation-induced cell death</subject><subject>Animals</subject><subject>anti-CTLA-4</subject><subject>anti-PD-1</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>cancer</subject><subject>Cancer therapies</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Clonal deletion</subject><subject>Clonal Deletion - drug effects</subject><subject>Clonal Deletion - immunology</subject><subject>CTLA-4 Antigen - antagonists &amp; inhibitors</subject><subject>CTLA-4 Antigen - immunology</subject><subject>CTLA-4 Antigen - metabolism</subject><subject>CTLA-4 protein</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Resistance, Neoplasm - immunology</subject><subject>Humans</subject><subject>IFN-γ</subject><subject>Immune checkpoint</subject><subject>Immune status</subject><subject>Immunity</subject><subject>Immunotherapy</subject><subject>Interferon</subject><subject>Interferon-gamma - immunology</subject><subject>Interferon-gamma - metabolism</subject><subject>Interferon-gamma - pharmacology</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Melanoma</subject><subject>Metastasis</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mutation</subject><subject>Neoplasms, Experimental - drug therapy</subject><subject>Neoplasms, Experimental - immunology</subject><subject>Neoplasms, Experimental - metabolism</subject><subject>PD-1 protein</subject><subject>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>Programmed Cell Death 1 Receptor - metabolism</subject><subject>T-Lymphocytes - drug effects</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - metabolism</subject><subject>Tumor Burden - drug effects</subject><subject>Tumor Burden - immunology</subject><subject>Tumors</subject><subject>γ-Interferon</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EoqXwBghZYsMmwY4dJ9kgQfgbqRISDGvLdm4YTxM72E6lrnkk3oNnwtMp5WfBylf2d4_vPQehx5SUlFDxfF_aeV6dLStCu5LQkhBxB51S0jUFpy25e6gbXjSCshP0IMY9IZTXHbmPThhpWEO5OEXf-sk7NeHXMEGy3mE_4u06-1B8WsDY0Rq8xT1MU8T6Cm9cgjBC8K748R333uU64u0OglpgTRn-CNHGpJwBnHwmZm2duhbeHKYF3O_AXCzeuoRfTd5cqAEeonujmiI8ujnP0Oe3b7b9--L8w7tN__K8MLyjqRCMcdB8UBVnNdUgTCeqbjTEGKCaDkwPXUu7hpvKaKFZV2lWa6hJvmWiGtkZenHUXVY9w2DApaAmuQQ7q3AlvbLy7xdnd_KLv5SibQVv6izw7EYg-K8rxCRnG002Rznwa5QVbTllddWIjD79B937NWSnr6m6rSsi2kzxI2WCjzHAeDsMJfKQstzLY8rykLIkVOaUc9uTPxe5bfoV6-9NIdt5aSHIaCzkUAYbwCQ5ePv_H34CAb-9bQ</recordid><startdate>20190219</startdate><enddate>20190219</enddate><creator>Pai, Chien-Chun Steven</creator><creator>Huang, John T.</creator><creator>Lu, Xiaoqing</creator><creator>Simons, Donald M.</creator><creator>Park, Chanhyuk</creator><creator>Chang, Anthony</creator><creator>Tamaki, Whitney</creator><creator>Liu, Eric</creator><creator>Roybal, Kole T.</creator><creator>Seagal, Jane</creator><creator>Chen, Mingyi</creator><creator>Hagihara, Katsunobu</creator><creator>Wei, Xiao X.</creator><creator>DuPage, Michel</creator><creator>Kwek, Serena S.</creator><creator>Oh, David Y.</creator><creator>Daud, Adil</creator><creator>Tsai, Katy K.</creator><creator>Wu, Clint</creator><creator>Zhang, Li</creator><creator>Fasso, Marcella</creator><creator>Sachidanandam, Ravi</creator><creator>Jayaprakash, Anitha</creator><creator>Lin, Ingrid</creator><creator>Casbon, Amy-Jo</creator><creator>Kinsbury, Gillian A.</creator><creator>Fong, Lawrence</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6428-428X</orcidid></search><sort><creationdate>20190219</creationdate><title>Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade</title><author>Pai, Chien-Chun Steven ; Huang, John T. ; Lu, Xiaoqing ; Simons, Donald M. ; Park, Chanhyuk ; Chang, Anthony ; Tamaki, Whitney ; Liu, Eric ; Roybal, Kole T. ; Seagal, Jane ; Chen, Mingyi ; Hagihara, Katsunobu ; Wei, Xiao X. ; DuPage, Michel ; Kwek, Serena S. ; Oh, David Y. ; Daud, Adil ; Tsai, Katy K. ; Wu, Clint ; Zhang, Li ; Fasso, Marcella ; Sachidanandam, Ravi ; Jayaprakash, Anitha ; Lin, Ingrid ; Casbon, Amy-Jo ; Kinsbury, Gillian A. ; Fong, Lawrence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-6334eb4da24351be6c9629fc0cce1b1d3bd981974c2cb6b392b35be50981362f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>activation-induced cell death</topic><topic>Animals</topic><topic>anti-CTLA-4</topic><topic>anti-PD-1</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>cancer</topic><topic>Cancer therapies</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Clonal deletion</topic><topic>Clonal Deletion - drug effects</topic><topic>Clonal Deletion - immunology</topic><topic>CTLA-4 Antigen - antagonists &amp; inhibitors</topic><topic>CTLA-4 Antigen - immunology</topic><topic>CTLA-4 Antigen - metabolism</topic><topic>CTLA-4 protein</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Resistance, Neoplasm - immunology</topic><topic>Humans</topic><topic>IFN-γ</topic><topic>Immune checkpoint</topic><topic>Immune status</topic><topic>Immunity</topic><topic>Immunotherapy</topic><topic>Interferon</topic><topic>Interferon-gamma - immunology</topic><topic>Interferon-gamma - metabolism</topic><topic>Interferon-gamma - pharmacology</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Melanoma</topic><topic>Metastasis</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mutation</topic><topic>Neoplasms, Experimental - drug therapy</topic><topic>Neoplasms, Experimental - immunology</topic><topic>Neoplasms, Experimental - metabolism</topic><topic>PD-1 protein</topic><topic>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>Programmed Cell Death 1 Receptor - metabolism</topic><topic>T-Lymphocytes - drug effects</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - metabolism</topic><topic>Tumor Burden - drug effects</topic><topic>Tumor Burden - immunology</topic><topic>Tumors</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pai, Chien-Chun Steven</creatorcontrib><creatorcontrib>Huang, John T.</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><creatorcontrib>Simons, Donald M.</creatorcontrib><creatorcontrib>Park, Chanhyuk</creatorcontrib><creatorcontrib>Chang, Anthony</creatorcontrib><creatorcontrib>Tamaki, Whitney</creatorcontrib><creatorcontrib>Liu, Eric</creatorcontrib><creatorcontrib>Roybal, Kole T.</creatorcontrib><creatorcontrib>Seagal, Jane</creatorcontrib><creatorcontrib>Chen, Mingyi</creatorcontrib><creatorcontrib>Hagihara, Katsunobu</creatorcontrib><creatorcontrib>Wei, Xiao X.</creatorcontrib><creatorcontrib>DuPage, Michel</creatorcontrib><creatorcontrib>Kwek, Serena S.</creatorcontrib><creatorcontrib>Oh, David Y.</creatorcontrib><creatorcontrib>Daud, Adil</creatorcontrib><creatorcontrib>Tsai, Katy K.</creatorcontrib><creatorcontrib>Wu, Clint</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Fasso, Marcella</creatorcontrib><creatorcontrib>Sachidanandam, Ravi</creatorcontrib><creatorcontrib>Jayaprakash, Anitha</creatorcontrib><creatorcontrib>Lin, Ingrid</creatorcontrib><creatorcontrib>Casbon, Amy-Jo</creatorcontrib><creatorcontrib>Kinsbury, Gillian A.</creatorcontrib><creatorcontrib>Fong, Lawrence</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pai, Chien-Chun Steven</au><au>Huang, John T.</au><au>Lu, Xiaoqing</au><au>Simons, Donald M.</au><au>Park, Chanhyuk</au><au>Chang, Anthony</au><au>Tamaki, Whitney</au><au>Liu, Eric</au><au>Roybal, Kole T.</au><au>Seagal, Jane</au><au>Chen, Mingyi</au><au>Hagihara, Katsunobu</au><au>Wei, Xiao X.</au><au>DuPage, Michel</au><au>Kwek, Serena S.</au><au>Oh, David Y.</au><au>Daud, Adil</au><au>Tsai, Katy K.</au><au>Wu, Clint</au><au>Zhang, Li</au><au>Fasso, Marcella</au><au>Sachidanandam, Ravi</au><au>Jayaprakash, Anitha</au><au>Lin, Ingrid</au><au>Casbon, Amy-Jo</au><au>Kinsbury, Gillian A.</au><au>Fong, Lawrence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2019-02-19</date><risdate>2019</risdate><volume>50</volume><issue>2</issue><spage>477</spage><epage>492.e8</epage><pages>477-492.e8</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies. [Display omitted] •Combination checkpoint blockade leads to impaired efficacy with low tumor burden•This impairment results from IFN-γ-mediated deletion of tumor-reactive T cells•AICD is an immune-intrinsic mechanism of therapeutic resistance to checkpoint blockade Although immune checkpoint blockades are being combined to enhance anti-tumor efficacy, Pai et al. find that this approach can lead to therapy resistance in the low tumor burden setting. Potent immunotherapy in this setting overdrives tumor-reactive T cells, leading to their death. Optimal immunotherapy could therefore be disease-context dependent.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30737146</pmid><doi>10.1016/j.immuni.2019.01.006</doi><orcidid>https://orcid.org/0000-0002-6428-428X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2019-02, Vol.50 (2), p.477-492.e8
issn 1074-7613
1097-4180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6886475
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects activation-induced cell death
Animals
anti-CTLA-4
anti-PD-1
Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - pharmacology
Antigens
Apoptosis
cancer
Cancer therapies
Cell death
Cell Line, Tumor
Clinical outcomes
Clinical trials
Clonal deletion
Clonal Deletion - drug effects
Clonal Deletion - immunology
CTLA-4 Antigen - antagonists & inhibitors
CTLA-4 Antigen - immunology
CTLA-4 Antigen - metabolism
CTLA-4 protein
Drug Resistance, Neoplasm - drug effects
Drug Resistance, Neoplasm - immunology
Humans
IFN-γ
Immune checkpoint
Immune status
Immunity
Immunotherapy
Interferon
Interferon-gamma - immunology
Interferon-gamma - metabolism
Interferon-gamma - pharmacology
Lymphocytes
Lymphocytes T
Male
Melanoma
Metastasis
Mice, Inbred C57BL
Mice, Knockout
Mutation
Neoplasms, Experimental - drug therapy
Neoplasms, Experimental - immunology
Neoplasms, Experimental - metabolism
PD-1 protein
Programmed Cell Death 1 Receptor - antagonists & inhibitors
Programmed Cell Death 1 Receptor - immunology
Programmed Cell Death 1 Receptor - metabolism
T-Lymphocytes - drug effects
T-Lymphocytes - immunology
T-Lymphocytes - metabolism
Tumor Burden - drug effects
Tumor Burden - immunology
Tumors
γ-Interferon
title Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clonal%20Deletion%20of%20Tumor-Specific%20T%20Cells%20by%20Interferon-%CE%B3%20Confers%20Therapeutic%20Resistance%20to%20Combination%20Immune%20Checkpoint%20Blockade&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Pai,%20Chien-Chun%20Steven&rft.date=2019-02-19&rft.volume=50&rft.issue=2&rft.spage=477&rft.epage=492.e8&rft.pages=477-492.e8&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2019.01.006&rft_dat=%3Cproquest_pubme%3E2184135276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185852068&rft_id=info:pmid/30737146&rft_els_id=S1074761319300299&rfr_iscdi=true