The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)

Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2019-11, Vol.294 (48), p.18324-18336
Hauptverfasser: Bikard, Yann, Viviano, Jeffrey, Orr, Melissa N., Brown, Lauren, Brecker, Margaret, Jeger, Jonathan Litvak, Grits, Daniel, Suaud, Laurence, Rubenstein, Ronald C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18336
container_issue 48
container_start_page 18324
container_title The Journal of biological chemistry
container_volume 294
creator Bikard, Yann
Viviano, Jeffrey
Orr, Melissa N.
Brown, Lauren
Brecker, Margaret
Jeger, Jonathan Litvak
Grits, Daniel
Suaud, Laurence
Rubenstein, Ronald C.
description Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29’s C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering β-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, β-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering β-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel’s open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC.
doi_str_mv 10.1074/jbc.RA119.008331
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6885628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820306955</els_id><sourcerecordid>2309496953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-98f6cfaa8c723ba63d4095957cd9dce42696aefa6f92e6214d6163a714414bf03</originalsourceid><addsrcrecordid>eNp1kc9P2zAUxy3EBF3HfafJR3ZIsWPHiTkgVV3Z0KpNmjqJm-U4z60htYudIu2_x1BAcJgvz9L3h5_8QegzJRNKan5205rJnymlckJIwxg9QCOaLwWr6PUhGhFS0kKWVXOMPqZ0Q_Lhkh6hY0ZFxWpCRsgu14B_fpsvcAQD2yFEvNYJaxxDD9h5PGS9dWEFHpLLgu_wELW1ztw6v8LBPjlg6_Lone5xCp3bbbBZa--hx6fzX3r29RP6YHWf4OR5jtHfy_ly9qNY_P5-NZsuCsMlHwrZWGGs1o2pS9ZqwTpOZCWr2nSyM8BLIYUGq4WVJYiS8k5QwXRNOae8tYSN0cW-d7trN5AjPi_bq210Gx3_qaCdeq94t1arcK9E01SibHLB6XNBDHc7SIPauGSg77WHsEuqZERyKWTFspXsrSaGlCLY12coUY94VMajnvCoPZ4c-fJ2vdfAC49sON8bIH_SvYOoknHgDXQu8xlUF9z_2x8AJ4GfqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309496953</pqid></control><display><type>article</type><title>The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bikard, Yann ; Viviano, Jeffrey ; Orr, Melissa N. ; Brown, Lauren ; Brecker, Margaret ; Jeger, Jonathan Litvak ; Grits, Daniel ; Suaud, Laurence ; Rubenstein, Ronald C.</creator><creatorcontrib>Bikard, Yann ; Viviano, Jeffrey ; Orr, Melissa N. ; Brown, Lauren ; Brecker, Margaret ; Jeger, Jonathan Litvak ; Grits, Daniel ; Suaud, Laurence ; Rubenstein, Ronald C.</creatorcontrib><description>Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29’s C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering β-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, β-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering β-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel’s open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.008331</identifier><identifier>PMID: 31653700</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; biogenesis ; Cell Biology ; Cells, Cultured ; chaperone ; coat complex II (COPII) ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Dogs ; endoplasmic reticulum (ER) ; Endoplasmic Reticulum - metabolism ; endoplasmic reticulum protein of 29 kDa (ERp29) ; Epithelial Cells - metabolism ; epithelial sodium channel (ENaC) ; Epithelial Sodium Channels - genetics ; Epithelial Sodium Channels - metabolism ; Golgi Apparatus - metabolism ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Humans ; KDEL receptor ; KEEL motif ; Madin Darby Canine Kidney Cells ; Mice ; Protein Transport ; Receptors, Peptide - genetics ; Receptors, Peptide - metabolism ; RNA Interference ; trafficking</subject><ispartof>The Journal of biological chemistry, 2019-11, Vol.294 (48), p.18324-18336</ispartof><rights>2019 © 2019 Bikard et al.</rights><rights>2019 Bikard et al.</rights><rights>2019 Bikard et al. 2019 Bikard et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-98f6cfaa8c723ba63d4095957cd9dce42696aefa6f92e6214d6163a714414bf03</citedby><cites>FETCH-LOGICAL-c494t-98f6cfaa8c723ba63d4095957cd9dce42696aefa6f92e6214d6163a714414bf03</cites><orcidid>0000-0002-3138-4006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885628/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885628/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31653700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bikard, Yann</creatorcontrib><creatorcontrib>Viviano, Jeffrey</creatorcontrib><creatorcontrib>Orr, Melissa N.</creatorcontrib><creatorcontrib>Brown, Lauren</creatorcontrib><creatorcontrib>Brecker, Margaret</creatorcontrib><creatorcontrib>Jeger, Jonathan Litvak</creatorcontrib><creatorcontrib>Grits, Daniel</creatorcontrib><creatorcontrib>Suaud, Laurence</creatorcontrib><creatorcontrib>Rubenstein, Ronald C.</creatorcontrib><title>The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29’s C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering β-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, β-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering β-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel’s open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC.</description><subject>Animals</subject><subject>biogenesis</subject><subject>Cell Biology</subject><subject>Cells, Cultured</subject><subject>chaperone</subject><subject>coat complex II (COPII)</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Dogs</subject><subject>endoplasmic reticulum (ER)</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>endoplasmic reticulum protein of 29 kDa (ERp29)</subject><subject>Epithelial Cells - metabolism</subject><subject>epithelial sodium channel (ENaC)</subject><subject>Epithelial Sodium Channels - genetics</subject><subject>Epithelial Sodium Channels - metabolism</subject><subject>Golgi Apparatus - metabolism</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>KDEL receptor</subject><subject>KEEL motif</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Mice</subject><subject>Protein Transport</subject><subject>Receptors, Peptide - genetics</subject><subject>Receptors, Peptide - metabolism</subject><subject>RNA Interference</subject><subject>trafficking</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9P2zAUxy3EBF3HfafJR3ZIsWPHiTkgVV3Z0KpNmjqJm-U4z60htYudIu2_x1BAcJgvz9L3h5_8QegzJRNKan5205rJnymlckJIwxg9QCOaLwWr6PUhGhFS0kKWVXOMPqZ0Q_Lhkh6hY0ZFxWpCRsgu14B_fpsvcAQD2yFEvNYJaxxDD9h5PGS9dWEFHpLLgu_wELW1ztw6v8LBPjlg6_Lone5xCp3bbbBZa--hx6fzX3r29RP6YHWf4OR5jtHfy_ly9qNY_P5-NZsuCsMlHwrZWGGs1o2pS9ZqwTpOZCWr2nSyM8BLIYUGq4WVJYiS8k5QwXRNOae8tYSN0cW-d7trN5AjPi_bq210Gx3_qaCdeq94t1arcK9E01SibHLB6XNBDHc7SIPauGSg77WHsEuqZERyKWTFspXsrSaGlCLY12coUY94VMajnvCoPZ4c-fJ2vdfAC49sON8bIH_SvYOoknHgDXQu8xlUF9z_2x8AJ4GfqA</recordid><startdate>20191129</startdate><enddate>20191129</enddate><creator>Bikard, Yann</creator><creator>Viviano, Jeffrey</creator><creator>Orr, Melissa N.</creator><creator>Brown, Lauren</creator><creator>Brecker, Margaret</creator><creator>Jeger, Jonathan Litvak</creator><creator>Grits, Daniel</creator><creator>Suaud, Laurence</creator><creator>Rubenstein, Ronald C.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3138-4006</orcidid></search><sort><creationdate>20191129</creationdate><title>The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)</title><author>Bikard, Yann ; Viviano, Jeffrey ; Orr, Melissa N. ; Brown, Lauren ; Brecker, Margaret ; Jeger, Jonathan Litvak ; Grits, Daniel ; Suaud, Laurence ; Rubenstein, Ronald C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-98f6cfaa8c723ba63d4095957cd9dce42696aefa6f92e6214d6163a714414bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>biogenesis</topic><topic>Cell Biology</topic><topic>Cells, Cultured</topic><topic>chaperone</topic><topic>coat complex II (COPII)</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Dogs</topic><topic>endoplasmic reticulum (ER)</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>endoplasmic reticulum protein of 29 kDa (ERp29)</topic><topic>Epithelial Cells - metabolism</topic><topic>epithelial sodium channel (ENaC)</topic><topic>Epithelial Sodium Channels - genetics</topic><topic>Epithelial Sodium Channels - metabolism</topic><topic>Golgi Apparatus - metabolism</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>KDEL receptor</topic><topic>KEEL motif</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Mice</topic><topic>Protein Transport</topic><topic>Receptors, Peptide - genetics</topic><topic>Receptors, Peptide - metabolism</topic><topic>RNA Interference</topic><topic>trafficking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bikard, Yann</creatorcontrib><creatorcontrib>Viviano, Jeffrey</creatorcontrib><creatorcontrib>Orr, Melissa N.</creatorcontrib><creatorcontrib>Brown, Lauren</creatorcontrib><creatorcontrib>Brecker, Margaret</creatorcontrib><creatorcontrib>Jeger, Jonathan Litvak</creatorcontrib><creatorcontrib>Grits, Daniel</creatorcontrib><creatorcontrib>Suaud, Laurence</creatorcontrib><creatorcontrib>Rubenstein, Ronald C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bikard, Yann</au><au>Viviano, Jeffrey</au><au>Orr, Melissa N.</au><au>Brown, Lauren</au><au>Brecker, Margaret</au><au>Jeger, Jonathan Litvak</au><au>Grits, Daniel</au><au>Suaud, Laurence</au><au>Rubenstein, Ronald C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-11-29</date><risdate>2019</risdate><volume>294</volume><issue>48</issue><spage>18324</spage><epage>18336</epage><pages>18324-18336</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29’s C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering β-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, β-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering β-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel’s open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31653700</pmid><doi>10.1074/jbc.RA119.008331</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3138-4006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2019-11, Vol.294 (48), p.18324-18336
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6885628
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
biogenesis
Cell Biology
Cells, Cultured
chaperone
coat complex II (COPII)
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Dogs
endoplasmic reticulum (ER)
Endoplasmic Reticulum - metabolism
endoplasmic reticulum protein of 29 kDa (ERp29)
Epithelial Cells - metabolism
epithelial sodium channel (ENaC)
Epithelial Sodium Channels - genetics
Epithelial Sodium Channels - metabolism
Golgi Apparatus - metabolism
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Humans
KDEL receptor
KEEL motif
Madin Darby Canine Kidney Cells
Mice
Protein Transport
Receptors, Peptide - genetics
Receptors, Peptide - metabolism
RNA Interference
trafficking
title The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20KDEL%20receptor%20has%20a%20role%20in%20the%20biogenesis%20and%20trafficking%20of%20the%20epithelial%20sodium%20channel%20(ENaC)&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bikard,%20Yann&rft.date=2019-11-29&rft.volume=294&rft.issue=48&rft.spage=18324&rft.epage=18336&rft.pages=18324-18336&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.008331&rft_dat=%3Cproquest_pubme%3E2309496953%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309496953&rft_id=info:pmid/31653700&rft_els_id=S0021925820306955&rfr_iscdi=true