The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)
Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open prob...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2019-11, Vol.294 (48), p.18324-18336 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18336 |
---|---|
container_issue | 48 |
container_start_page | 18324 |
container_title | The Journal of biological chemistry |
container_volume | 294 |
creator | Bikard, Yann Viviano, Jeffrey Orr, Melissa N. Brown, Lauren Brecker, Margaret Jeger, Jonathan Litvak Grits, Daniel Suaud, Laurence Rubenstein, Ronald C. |
description | Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29’s C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering β-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, β-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering β-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel’s open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC. |
doi_str_mv | 10.1074/jbc.RA119.008331 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6885628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820306955</els_id><sourcerecordid>2309496953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-98f6cfaa8c723ba63d4095957cd9dce42696aefa6f92e6214d6163a714414bf03</originalsourceid><addsrcrecordid>eNp1kc9P2zAUxy3EBF3HfafJR3ZIsWPHiTkgVV3Z0KpNmjqJm-U4z60htYudIu2_x1BAcJgvz9L3h5_8QegzJRNKan5205rJnymlckJIwxg9QCOaLwWr6PUhGhFS0kKWVXOMPqZ0Q_Lhkh6hY0ZFxWpCRsgu14B_fpsvcAQD2yFEvNYJaxxDD9h5PGS9dWEFHpLLgu_wELW1ztw6v8LBPjlg6_Lone5xCp3bbbBZa--hx6fzX3r29RP6YHWf4OR5jtHfy_ly9qNY_P5-NZsuCsMlHwrZWGGs1o2pS9ZqwTpOZCWr2nSyM8BLIYUGq4WVJYiS8k5QwXRNOae8tYSN0cW-d7trN5AjPi_bq210Gx3_qaCdeq94t1arcK9E01SibHLB6XNBDHc7SIPauGSg77WHsEuqZERyKWTFspXsrSaGlCLY12coUY94VMajnvCoPZ4c-fJ2vdfAC49sON8bIH_SvYOoknHgDXQu8xlUF9z_2x8AJ4GfqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309496953</pqid></control><display><type>article</type><title>The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bikard, Yann ; Viviano, Jeffrey ; Orr, Melissa N. ; Brown, Lauren ; Brecker, Margaret ; Jeger, Jonathan Litvak ; Grits, Daniel ; Suaud, Laurence ; Rubenstein, Ronald C.</creator><creatorcontrib>Bikard, Yann ; Viviano, Jeffrey ; Orr, Melissa N. ; Brown, Lauren ; Brecker, Margaret ; Jeger, Jonathan Litvak ; Grits, Daniel ; Suaud, Laurence ; Rubenstein, Ronald C.</creatorcontrib><description>Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29’s C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering β-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, β-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering β-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel’s open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.008331</identifier><identifier>PMID: 31653700</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; biogenesis ; Cell Biology ; Cells, Cultured ; chaperone ; coat complex II (COPII) ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Dogs ; endoplasmic reticulum (ER) ; Endoplasmic Reticulum - metabolism ; endoplasmic reticulum protein of 29 kDa (ERp29) ; Epithelial Cells - metabolism ; epithelial sodium channel (ENaC) ; Epithelial Sodium Channels - genetics ; Epithelial Sodium Channels - metabolism ; Golgi Apparatus - metabolism ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Humans ; KDEL receptor ; KEEL motif ; Madin Darby Canine Kidney Cells ; Mice ; Protein Transport ; Receptors, Peptide - genetics ; Receptors, Peptide - metabolism ; RNA Interference ; trafficking</subject><ispartof>The Journal of biological chemistry, 2019-11, Vol.294 (48), p.18324-18336</ispartof><rights>2019 © 2019 Bikard et al.</rights><rights>2019 Bikard et al.</rights><rights>2019 Bikard et al. 2019 Bikard et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-98f6cfaa8c723ba63d4095957cd9dce42696aefa6f92e6214d6163a714414bf03</citedby><cites>FETCH-LOGICAL-c494t-98f6cfaa8c723ba63d4095957cd9dce42696aefa6f92e6214d6163a714414bf03</cites><orcidid>0000-0002-3138-4006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885628/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885628/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31653700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bikard, Yann</creatorcontrib><creatorcontrib>Viviano, Jeffrey</creatorcontrib><creatorcontrib>Orr, Melissa N.</creatorcontrib><creatorcontrib>Brown, Lauren</creatorcontrib><creatorcontrib>Brecker, Margaret</creatorcontrib><creatorcontrib>Jeger, Jonathan Litvak</creatorcontrib><creatorcontrib>Grits, Daniel</creatorcontrib><creatorcontrib>Suaud, Laurence</creatorcontrib><creatorcontrib>Rubenstein, Ronald C.</creatorcontrib><title>The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29’s C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering β-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, β-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering β-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel’s open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC.</description><subject>Animals</subject><subject>biogenesis</subject><subject>Cell Biology</subject><subject>Cells, Cultured</subject><subject>chaperone</subject><subject>coat complex II (COPII)</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Dogs</subject><subject>endoplasmic reticulum (ER)</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>endoplasmic reticulum protein of 29 kDa (ERp29)</subject><subject>Epithelial Cells - metabolism</subject><subject>epithelial sodium channel (ENaC)</subject><subject>Epithelial Sodium Channels - genetics</subject><subject>Epithelial Sodium Channels - metabolism</subject><subject>Golgi Apparatus - metabolism</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>KDEL receptor</subject><subject>KEEL motif</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Mice</subject><subject>Protein Transport</subject><subject>Receptors, Peptide - genetics</subject><subject>Receptors, Peptide - metabolism</subject><subject>RNA Interference</subject><subject>trafficking</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9P2zAUxy3EBF3HfafJR3ZIsWPHiTkgVV3Z0KpNmjqJm-U4z60htYudIu2_x1BAcJgvz9L3h5_8QegzJRNKan5205rJnymlckJIwxg9QCOaLwWr6PUhGhFS0kKWVXOMPqZ0Q_Lhkh6hY0ZFxWpCRsgu14B_fpsvcAQD2yFEvNYJaxxDD9h5PGS9dWEFHpLLgu_wELW1ztw6v8LBPjlg6_Lone5xCp3bbbBZa--hx6fzX3r29RP6YHWf4OR5jtHfy_ly9qNY_P5-NZsuCsMlHwrZWGGs1o2pS9ZqwTpOZCWr2nSyM8BLIYUGq4WVJYiS8k5QwXRNOae8tYSN0cW-d7trN5AjPi_bq210Gx3_qaCdeq94t1arcK9E01SibHLB6XNBDHc7SIPauGSg77WHsEuqZERyKWTFspXsrSaGlCLY12coUY94VMajnvCoPZ4c-fJ2vdfAC49sON8bIH_SvYOoknHgDXQu8xlUF9z_2x8AJ4GfqA</recordid><startdate>20191129</startdate><enddate>20191129</enddate><creator>Bikard, Yann</creator><creator>Viviano, Jeffrey</creator><creator>Orr, Melissa N.</creator><creator>Brown, Lauren</creator><creator>Brecker, Margaret</creator><creator>Jeger, Jonathan Litvak</creator><creator>Grits, Daniel</creator><creator>Suaud, Laurence</creator><creator>Rubenstein, Ronald C.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3138-4006</orcidid></search><sort><creationdate>20191129</creationdate><title>The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)</title><author>Bikard, Yann ; Viviano, Jeffrey ; Orr, Melissa N. ; Brown, Lauren ; Brecker, Margaret ; Jeger, Jonathan Litvak ; Grits, Daniel ; Suaud, Laurence ; Rubenstein, Ronald C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-98f6cfaa8c723ba63d4095957cd9dce42696aefa6f92e6214d6163a714414bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>biogenesis</topic><topic>Cell Biology</topic><topic>Cells, Cultured</topic><topic>chaperone</topic><topic>coat complex II (COPII)</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Dogs</topic><topic>endoplasmic reticulum (ER)</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>endoplasmic reticulum protein of 29 kDa (ERp29)</topic><topic>Epithelial Cells - metabolism</topic><topic>epithelial sodium channel (ENaC)</topic><topic>Epithelial Sodium Channels - genetics</topic><topic>Epithelial Sodium Channels - metabolism</topic><topic>Golgi Apparatus - metabolism</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>KDEL receptor</topic><topic>KEEL motif</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Mice</topic><topic>Protein Transport</topic><topic>Receptors, Peptide - genetics</topic><topic>Receptors, Peptide - metabolism</topic><topic>RNA Interference</topic><topic>trafficking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bikard, Yann</creatorcontrib><creatorcontrib>Viviano, Jeffrey</creatorcontrib><creatorcontrib>Orr, Melissa N.</creatorcontrib><creatorcontrib>Brown, Lauren</creatorcontrib><creatorcontrib>Brecker, Margaret</creatorcontrib><creatorcontrib>Jeger, Jonathan Litvak</creatorcontrib><creatorcontrib>Grits, Daniel</creatorcontrib><creatorcontrib>Suaud, Laurence</creatorcontrib><creatorcontrib>Rubenstein, Ronald C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bikard, Yann</au><au>Viviano, Jeffrey</au><au>Orr, Melissa N.</au><au>Brown, Lauren</au><au>Brecker, Margaret</au><au>Jeger, Jonathan Litvak</au><au>Grits, Daniel</au><au>Suaud, Laurence</au><au>Rubenstein, Ronald C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC)</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-11-29</date><risdate>2019</risdate><volume>294</volume><issue>48</issue><spage>18324</spage><epage>18336</epage><pages>18324-18336</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29’s C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering β-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, β-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering β-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel’s open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31653700</pmid><doi>10.1074/jbc.RA119.008331</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3138-4006</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2019-11, Vol.294 (48), p.18324-18336 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6885628 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals biogenesis Cell Biology Cells, Cultured chaperone coat complex II (COPII) Cystic Fibrosis Transmembrane Conductance Regulator - genetics Cystic Fibrosis Transmembrane Conductance Regulator - metabolism Dogs endoplasmic reticulum (ER) Endoplasmic Reticulum - metabolism endoplasmic reticulum protein of 29 kDa (ERp29) Epithelial Cells - metabolism epithelial sodium channel (ENaC) Epithelial Sodium Channels - genetics Epithelial Sodium Channels - metabolism Golgi Apparatus - metabolism Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Humans KDEL receptor KEEL motif Madin Darby Canine Kidney Cells Mice Protein Transport Receptors, Peptide - genetics Receptors, Peptide - metabolism RNA Interference trafficking |
title | The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20KDEL%20receptor%20has%20a%20role%20in%20the%20biogenesis%20and%20trafficking%20of%20the%20epithelial%20sodium%20channel%20(ENaC)&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bikard,%20Yann&rft.date=2019-11-29&rft.volume=294&rft.issue=48&rft.spage=18324&rft.epage=18336&rft.pages=18324-18336&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.008331&rft_dat=%3Cproquest_pubme%3E2309496953%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309496953&rft_id=info:pmid/31653700&rft_els_id=S0021925820306955&rfr_iscdi=true |