Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions

Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2019-11, Vol.2 (11), p.8010-8021
Hauptverfasser: Felter, Kevin M, Caselli, Valentina M, Günbaş, D. Deniz, Savenije, Tom J, Grozema, Ferdinand C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8021
container_issue 11
container_start_page 8010
container_title ACS applied energy materials
container_volume 2
creator Felter, Kevin M
Caselli, Valentina M
Günbaş, D. Deniz
Savenije, Tom J
Grozema, Ferdinand C
description Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.
doi_str_mv 10.1021/acsaem.9b01490
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6880777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320637957</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-41dee6215fb373adf946ab41c6d2a8c64358b55b5d8d885615476d2816a2463</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EolXplbOPCG0WO7Ed54IEodBKrahU7tbEmWy9JPZiJ0D-BL-ZrHapyqGnGc187400j5DXnK05y_k7sAlwWFcN46Jiz8hpLkuRsUrlzx_1J-Q8pS1jjFdc5VX1kpwUvNRaKXFK_lz5EeOuh5k2OP5C9LS-h7hBWkOMDiO9CY3r3Tiv6MVv68bg6SfXdVNywa9oHec0Qk9vwX53frOi4Nt_Bne4gwjjwlHn6S3GuUePi9oNrsXsIyRs6SUu58N28nYPplfkRQd9wvNjPSN3ny--1ZfZ9dcvV_WH6wyE0mMmeIuoci67pigLaLtKKGgEt6rNQVslCqkbKRvZ6lZrqbgU5bLSXEEuVHFG3h9cd1MzYGvRjxF6s4tugDibAM78v_Hu3mzCT6O0ZmVZLgZvjgYx_JgwjWZwyWLfg8cwJZMXOVNFWck9uj6gNoaUInYPZzgz-xTNIUVzTHERvD0IlrnZhin65RFPwX8BCcCgOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320637957</pqid></control><display><type>article</type><title>Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions</title><source>ACS Publications</source><creator>Felter, Kevin M ; Caselli, Valentina M ; Günbaş, D. Deniz ; Savenije, Tom J ; Grozema, Ferdinand C</creator><creatorcontrib>Felter, Kevin M ; Caselli, Valentina M ; Günbaş, D. Deniz ; Savenije, Tom J ; Grozema, Ferdinand C</creatorcontrib><description>Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b01490</identifier><identifier>PMID: 31788664</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-11, Vol.2 (11), p.8010-8021</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-41dee6215fb373adf946ab41c6d2a8c64358b55b5d8d885615476d2816a2463</citedby><cites>FETCH-LOGICAL-a468t-41dee6215fb373adf946ab41c6d2a8c64358b55b5d8d885615476d2816a2463</cites><orcidid>0000-0002-5316-6405 ; 0000-0003-1435-9885 ; 0000-0002-4375-799X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b01490$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b01490$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Felter, Kevin M</creatorcontrib><creatorcontrib>Caselli, Valentina M</creatorcontrib><creatorcontrib>Günbaş, D. Deniz</creatorcontrib><creatorcontrib>Savenije, Tom J</creatorcontrib><creatorcontrib>Grozema, Ferdinand C</creatorcontrib><title>Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EolXplbOPCG0WO7Ed54IEodBKrahU7tbEmWy9JPZiJ0D-BL-ZrHapyqGnGc187400j5DXnK05y_k7sAlwWFcN46Jiz8hpLkuRsUrlzx_1J-Q8pS1jjFdc5VX1kpwUvNRaKXFK_lz5EeOuh5k2OP5C9LS-h7hBWkOMDiO9CY3r3Tiv6MVv68bg6SfXdVNywa9oHec0Qk9vwX53frOi4Nt_Bne4gwjjwlHn6S3GuUePi9oNrsXsIyRs6SUu58N28nYPplfkRQd9wvNjPSN3ny--1ZfZ9dcvV_WH6wyE0mMmeIuoci67pigLaLtKKGgEt6rNQVslCqkbKRvZ6lZrqbgU5bLSXEEuVHFG3h9cd1MzYGvRjxF6s4tugDibAM78v_Hu3mzCT6O0ZmVZLgZvjgYx_JgwjWZwyWLfg8cwJZMXOVNFWck9uj6gNoaUInYPZzgz-xTNIUVzTHERvD0IlrnZhin65RFPwX8BCcCgOA</recordid><startdate>20191125</startdate><enddate>20191125</enddate><creator>Felter, Kevin M</creator><creator>Caselli, Valentina M</creator><creator>Günbaş, D. Deniz</creator><creator>Savenije, Tom J</creator><creator>Grozema, Ferdinand C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5316-6405</orcidid><orcidid>https://orcid.org/0000-0003-1435-9885</orcidid><orcidid>https://orcid.org/0000-0002-4375-799X</orcidid></search><sort><creationdate>20191125</creationdate><title>Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions</title><author>Felter, Kevin M ; Caselli, Valentina M ; Günbaş, D. Deniz ; Savenije, Tom J ; Grozema, Ferdinand C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-41dee6215fb373adf946ab41c6d2a8c64358b55b5d8d885615476d2816a2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felter, Kevin M</creatorcontrib><creatorcontrib>Caselli, Valentina M</creatorcontrib><creatorcontrib>Günbaş, D. Deniz</creatorcontrib><creatorcontrib>Savenije, Tom J</creatorcontrib><creatorcontrib>Grozema, Ferdinand C</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felter, Kevin M</au><au>Caselli, Valentina M</au><au>Günbaş, D. Deniz</au><au>Savenije, Tom J</au><au>Grozema, Ferdinand C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-11-25</date><risdate>2019</risdate><volume>2</volume><issue>11</issue><spage>8010</spage><epage>8021</epage><pages>8010-8021</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.</abstract><pub>American Chemical Society</pub><pmid>31788664</pmid><doi>10.1021/acsaem.9b01490</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5316-6405</orcidid><orcidid>https://orcid.org/0000-0003-1435-9885</orcidid><orcidid>https://orcid.org/0000-0002-4375-799X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2019-11, Vol.2 (11), p.8010-8021
issn 2574-0962
2574-0962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6880777
source ACS Publications
title Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20Charge%20Carrier%20Mobility,%20Exciton%20Diffusion,%20Crystal%20Packing,%20and%20Charge%20Separation%20in%20Perylene%20Diimide-Based%20Heterojunctions&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Felter,%20Kevin%20M&rft.date=2019-11-25&rft.volume=2&rft.issue=11&rft.spage=8010&rft.epage=8021&rft.pages=8010-8021&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b01490&rft_dat=%3Cproquest_pubme%3E2320637957%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320637957&rft_id=info:pmid/31788664&rfr_iscdi=true