Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions
Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2019-11, Vol.2 (11), p.8010-8021 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8021 |
---|---|
container_issue | 11 |
container_start_page | 8010 |
container_title | ACS applied energy materials |
container_volume | 2 |
creator | Felter, Kevin M Caselli, Valentina M Günbaş, D. Deniz Savenije, Tom J Grozema, Ferdinand C |
description | Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing. |
doi_str_mv | 10.1021/acsaem.9b01490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6880777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320637957</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-41dee6215fb373adf946ab41c6d2a8c64358b55b5d8d885615476d2816a2463</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EolXplbOPCG0WO7Ed54IEodBKrahU7tbEmWy9JPZiJ0D-BL-ZrHapyqGnGc187400j5DXnK05y_k7sAlwWFcN46Jiz8hpLkuRsUrlzx_1J-Q8pS1jjFdc5VX1kpwUvNRaKXFK_lz5EeOuh5k2OP5C9LS-h7hBWkOMDiO9CY3r3Tiv6MVv68bg6SfXdVNywa9oHec0Qk9vwX53frOi4Nt_Bne4gwjjwlHn6S3GuUePi9oNrsXsIyRs6SUu58N28nYPplfkRQd9wvNjPSN3ny--1ZfZ9dcvV_WH6wyE0mMmeIuoci67pigLaLtKKGgEt6rNQVslCqkbKRvZ6lZrqbgU5bLSXEEuVHFG3h9cd1MzYGvRjxF6s4tugDibAM78v_Hu3mzCT6O0ZmVZLgZvjgYx_JgwjWZwyWLfg8cwJZMXOVNFWck9uj6gNoaUInYPZzgz-xTNIUVzTHERvD0IlrnZhin65RFPwX8BCcCgOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320637957</pqid></control><display><type>article</type><title>Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions</title><source>ACS Publications</source><creator>Felter, Kevin M ; Caselli, Valentina M ; Günbaş, D. Deniz ; Savenije, Tom J ; Grozema, Ferdinand C</creator><creatorcontrib>Felter, Kevin M ; Caselli, Valentina M ; Günbaş, D. Deniz ; Savenije, Tom J ; Grozema, Ferdinand C</creatorcontrib><description>Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b01490</identifier><identifier>PMID: 31788664</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-11, Vol.2 (11), p.8010-8021</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-41dee6215fb373adf946ab41c6d2a8c64358b55b5d8d885615476d2816a2463</citedby><cites>FETCH-LOGICAL-a468t-41dee6215fb373adf946ab41c6d2a8c64358b55b5d8d885615476d2816a2463</cites><orcidid>0000-0002-5316-6405 ; 0000-0003-1435-9885 ; 0000-0002-4375-799X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b01490$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b01490$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Felter, Kevin M</creatorcontrib><creatorcontrib>Caselli, Valentina M</creatorcontrib><creatorcontrib>Günbaş, D. Deniz</creatorcontrib><creatorcontrib>Savenije, Tom J</creatorcontrib><creatorcontrib>Grozema, Ferdinand C</creatorcontrib><title>Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EolXplbOPCG0WO7Ed54IEodBKrahU7tbEmWy9JPZiJ0D-BL-ZrHapyqGnGc187400j5DXnK05y_k7sAlwWFcN46Jiz8hpLkuRsUrlzx_1J-Q8pS1jjFdc5VX1kpwUvNRaKXFK_lz5EeOuh5k2OP5C9LS-h7hBWkOMDiO9CY3r3Tiv6MVv68bg6SfXdVNywa9oHec0Qk9vwX53frOi4Nt_Bne4gwjjwlHn6S3GuUePi9oNrsXsIyRs6SUu58N28nYPplfkRQd9wvNjPSN3ny--1ZfZ9dcvV_WH6wyE0mMmeIuoci67pigLaLtKKGgEt6rNQVslCqkbKRvZ6lZrqbgU5bLSXEEuVHFG3h9cd1MzYGvRjxF6s4tugDibAM78v_Hu3mzCT6O0ZmVZLgZvjgYx_JgwjWZwyWLfg8cwJZMXOVNFWck9uj6gNoaUInYPZzgz-xTNIUVzTHERvD0IlrnZhin65RFPwX8BCcCgOA</recordid><startdate>20191125</startdate><enddate>20191125</enddate><creator>Felter, Kevin M</creator><creator>Caselli, Valentina M</creator><creator>Günbaş, D. Deniz</creator><creator>Savenije, Tom J</creator><creator>Grozema, Ferdinand C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5316-6405</orcidid><orcidid>https://orcid.org/0000-0003-1435-9885</orcidid><orcidid>https://orcid.org/0000-0002-4375-799X</orcidid></search><sort><creationdate>20191125</creationdate><title>Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions</title><author>Felter, Kevin M ; Caselli, Valentina M ; Günbaş, D. Deniz ; Savenije, Tom J ; Grozema, Ferdinand C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-41dee6215fb373adf946ab41c6d2a8c64358b55b5d8d885615476d2816a2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felter, Kevin M</creatorcontrib><creatorcontrib>Caselli, Valentina M</creatorcontrib><creatorcontrib>Günbaş, D. Deniz</creatorcontrib><creatorcontrib>Savenije, Tom J</creatorcontrib><creatorcontrib>Grozema, Ferdinand C</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felter, Kevin M</au><au>Caselli, Valentina M</au><au>Günbaş, D. Deniz</au><au>Savenije, Tom J</au><au>Grozema, Ferdinand C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-11-25</date><risdate>2019</risdate><volume>2</volume><issue>11</issue><spage>8010</spage><epage>8021</epage><pages>8010-8021</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.</abstract><pub>American Chemical Society</pub><pmid>31788664</pmid><doi>10.1021/acsaem.9b01490</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5316-6405</orcidid><orcidid>https://orcid.org/0000-0003-1435-9885</orcidid><orcidid>https://orcid.org/0000-0002-4375-799X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2019-11, Vol.2 (11), p.8010-8021 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6880777 |
source | ACS Publications |
title | Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20Charge%20Carrier%20Mobility,%20Exciton%20Diffusion,%20Crystal%20Packing,%20and%20Charge%20Separation%20in%20Perylene%20Diimide-Based%20Heterojunctions&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Felter,%20Kevin%20M&rft.date=2019-11-25&rft.volume=2&rft.issue=11&rft.spage=8010&rft.epage=8021&rft.pages=8010-8021&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b01490&rft_dat=%3Cproquest_pubme%3E2320637957%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320637957&rft_id=info:pmid/31788664&rfr_iscdi=true |