Small-Molecule Antiviral β-d-N4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance
The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral acti...
Gespeichert in:
Veröffentlicht in: | Journal of virology 2019-12, Vol.93 (24) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Journal of virology |
container_volume | 93 |
creator | Agostini, Maria L. Pruijssers, Andrea J. Chappell, James D. Gribble, Jennifer Lu, Xiaotao Andres, Erica L. Bluemling, Gregory R. Lockwood, Mark A. Sheahan, Timothy P. Sims, Amy C. Natchus, Michael G. Saindane, Manohar Kolykhalov, Alexander A. Painter, George R. Baric, Ralph S. Denison, Mark R. |
description | The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, β-
d
-
N
4
-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.
Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3′-5′ exoribonuclease (ExoN). β-
d
-
N
4
-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC
50
] = 0.17 μM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC
50
= 0.56 μM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Togethe |
doi_str_mv | 10.1128/JVI.01348-19 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6880162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_6880162</sourcerecordid><originalsourceid>FETCH-LOGICAL-p158t-6da4710ca4a9cdbe0b0674fa12cbec64ca8b5f9ecf3a75cd81a682ec5531d7e93</originalsourceid><addsrcrecordid>eNpVj0tOwzAURS0EgvKZsQBvwMVO7MSZIJUK2iJ-4idm0Yvz0hqlduW4QBbAhlgIa6ISTBhd6d6jI11CjgUfCpHok8vn2ZCLVGomii0yELzQTCkht8mA8yRhKtUve2S_6145F1JmcpfspULlOtF6QD4fltC27Nq3aNYt0pGL9s0GaOn3F6vZjWTTvg7-ozd9tLV1SGduYSsbOwr0LnjfBIRNP2czF8FEOvbBO9go1h19t3GxwaZ2vqATdBitoWcQgsVAo6f32NkugjN4SHYaaDs8-ssD8nRx_jiesqvbyWw8umIroXRkWQ0yF9yAhMLUFfKKZ7lsQCSmQpNJA7pSTYGmSSFXptYCMp2gUSoVdY5FekBOf72rdbXE2qCLm6vlKtglhL70YMv_i7OLcu7fykxrLrIk_QFjjnMd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small-Molecule Antiviral β-d-N4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Agostini, Maria L. ; Pruijssers, Andrea J. ; Chappell, James D. ; Gribble, Jennifer ; Lu, Xiaotao ; Andres, Erica L. ; Bluemling, Gregory R. ; Lockwood, Mark A. ; Sheahan, Timothy P. ; Sims, Amy C. ; Natchus, Michael G. ; Saindane, Manohar ; Kolykhalov, Alexander A. ; Painter, George R. ; Baric, Ralph S. ; Denison, Mark R.</creator><creatorcontrib>Agostini, Maria L. ; Pruijssers, Andrea J. ; Chappell, James D. ; Gribble, Jennifer ; Lu, Xiaotao ; Andres, Erica L. ; Bluemling, Gregory R. ; Lockwood, Mark A. ; Sheahan, Timothy P. ; Sims, Amy C. ; Natchus, Michael G. ; Saindane, Manohar ; Kolykhalov, Alexander A. ; Painter, George R. ; Baric, Ralph S. ; Denison, Mark R.</creatorcontrib><description>The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, β-
d
-
N
4
-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.
Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3′-5′ exoribonuclease (ExoN). β-
d
-
N
4
-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC
50
] = 0.17 μM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC
50
= 0.56 μM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.
IMPORTANCE
The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, β-
d
-
N
4
-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.</description><identifier>ISSN: 0022-538X</identifier><identifier>EISSN: 1098-5514</identifier><identifier>DOI: 10.1128/JVI.01348-19</identifier><identifier>PMID: 31578288</identifier><language>eng</language><publisher>1752 N St., N.W., Washington, DC: American Society for Microbiology</publisher><subject>Vaccines and Antiviral Agents</subject><ispartof>Journal of virology, 2019-12, Vol.93 (24)</ispartof><rights>Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880162/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880162/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Agostini, Maria L.</creatorcontrib><creatorcontrib>Pruijssers, Andrea J.</creatorcontrib><creatorcontrib>Chappell, James D.</creatorcontrib><creatorcontrib>Gribble, Jennifer</creatorcontrib><creatorcontrib>Lu, Xiaotao</creatorcontrib><creatorcontrib>Andres, Erica L.</creatorcontrib><creatorcontrib>Bluemling, Gregory R.</creatorcontrib><creatorcontrib>Lockwood, Mark A.</creatorcontrib><creatorcontrib>Sheahan, Timothy P.</creatorcontrib><creatorcontrib>Sims, Amy C.</creatorcontrib><creatorcontrib>Natchus, Michael G.</creatorcontrib><creatorcontrib>Saindane, Manohar</creatorcontrib><creatorcontrib>Kolykhalov, Alexander A.</creatorcontrib><creatorcontrib>Painter, George R.</creatorcontrib><creatorcontrib>Baric, Ralph S.</creatorcontrib><creatorcontrib>Denison, Mark R.</creatorcontrib><title>Small-Molecule Antiviral β-d-N4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance</title><title>Journal of virology</title><description>The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, β-
d
-
N
4
-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.
Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3′-5′ exoribonuclease (ExoN). β-
d
-
N
4
-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC
50
] = 0.17 μM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC
50
= 0.56 μM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.
IMPORTANCE
The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, β-
d
-
N
4
-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.</description><subject>Vaccines and Antiviral Agents</subject><issn>0022-538X</issn><issn>1098-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVj0tOwzAURS0EgvKZsQBvwMVO7MSZIJUK2iJ-4idm0Yvz0hqlduW4QBbAhlgIa6ISTBhd6d6jI11CjgUfCpHok8vn2ZCLVGomii0yELzQTCkht8mA8yRhKtUve2S_6145F1JmcpfspULlOtF6QD4fltC27Nq3aNYt0pGL9s0GaOn3F6vZjWTTvg7-ozd9tLV1SGduYSsbOwr0LnjfBIRNP2czF8FEOvbBO9go1h19t3GxwaZ2vqATdBitoWcQgsVAo6f32NkugjN4SHYaaDs8-ssD8nRx_jiesqvbyWw8umIroXRkWQ0yF9yAhMLUFfKKZ7lsQCSmQpNJA7pSTYGmSSFXptYCMp2gUSoVdY5FekBOf72rdbXE2qCLm6vlKtglhL70YMv_i7OLcu7fykxrLrIk_QFjjnMd</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Agostini, Maria L.</creator><creator>Pruijssers, Andrea J.</creator><creator>Chappell, James D.</creator><creator>Gribble, Jennifer</creator><creator>Lu, Xiaotao</creator><creator>Andres, Erica L.</creator><creator>Bluemling, Gregory R.</creator><creator>Lockwood, Mark A.</creator><creator>Sheahan, Timothy P.</creator><creator>Sims, Amy C.</creator><creator>Natchus, Michael G.</creator><creator>Saindane, Manohar</creator><creator>Kolykhalov, Alexander A.</creator><creator>Painter, George R.</creator><creator>Baric, Ralph S.</creator><creator>Denison, Mark R.</creator><general>American Society for Microbiology</general><scope>5PM</scope></search><sort><creationdate>20191215</creationdate><title>Small-Molecule Antiviral β-d-N4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance</title><author>Agostini, Maria L. ; Pruijssers, Andrea J. ; Chappell, James D. ; Gribble, Jennifer ; Lu, Xiaotao ; Andres, Erica L. ; Bluemling, Gregory R. ; Lockwood, Mark A. ; Sheahan, Timothy P. ; Sims, Amy C. ; Natchus, Michael G. ; Saindane, Manohar ; Kolykhalov, Alexander A. ; Painter, George R. ; Baric, Ralph S. ; Denison, Mark R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p158t-6da4710ca4a9cdbe0b0674fa12cbec64ca8b5f9ecf3a75cd81a682ec5531d7e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Vaccines and Antiviral Agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agostini, Maria L.</creatorcontrib><creatorcontrib>Pruijssers, Andrea J.</creatorcontrib><creatorcontrib>Chappell, James D.</creatorcontrib><creatorcontrib>Gribble, Jennifer</creatorcontrib><creatorcontrib>Lu, Xiaotao</creatorcontrib><creatorcontrib>Andres, Erica L.</creatorcontrib><creatorcontrib>Bluemling, Gregory R.</creatorcontrib><creatorcontrib>Lockwood, Mark A.</creatorcontrib><creatorcontrib>Sheahan, Timothy P.</creatorcontrib><creatorcontrib>Sims, Amy C.</creatorcontrib><creatorcontrib>Natchus, Michael G.</creatorcontrib><creatorcontrib>Saindane, Manohar</creatorcontrib><creatorcontrib>Kolykhalov, Alexander A.</creatorcontrib><creatorcontrib>Painter, George R.</creatorcontrib><creatorcontrib>Baric, Ralph S.</creatorcontrib><creatorcontrib>Denison, Mark R.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agostini, Maria L.</au><au>Pruijssers, Andrea J.</au><au>Chappell, James D.</au><au>Gribble, Jennifer</au><au>Lu, Xiaotao</au><au>Andres, Erica L.</au><au>Bluemling, Gregory R.</au><au>Lockwood, Mark A.</au><au>Sheahan, Timothy P.</au><au>Sims, Amy C.</au><au>Natchus, Michael G.</au><au>Saindane, Manohar</au><au>Kolykhalov, Alexander A.</au><au>Painter, George R.</au><au>Baric, Ralph S.</au><au>Denison, Mark R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-Molecule Antiviral β-d-N4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance</atitle><jtitle>Journal of virology</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>93</volume><issue>24</issue><issn>0022-538X</issn><eissn>1098-5514</eissn><abstract>The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, β-
d
-
N
4
-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.
Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3′-5′ exoribonuclease (ExoN). β-
d
-
N
4
-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC
50
] = 0.17 μM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC
50
= 0.56 μM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.
IMPORTANCE
The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, β-
d
-
N
4
-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.</abstract><cop>1752 N St., N.W., Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>31578288</pmid><doi>10.1128/JVI.01348-19</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-538X |
ispartof | Journal of virology, 2019-12, Vol.93 (24) |
issn | 0022-538X 1098-5514 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6880162 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Vaccines and Antiviral Agents |
title | Small-Molecule Antiviral β-d-N4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-Molecule%20Antiviral%20%CE%B2-d-N4-Hydroxycytidine%20Inhibits%20a%20Proofreading-Intact%20Coronavirus%20with%20a%20High%20Genetic%20Barrier%20to%20Resistance&rft.jtitle=Journal%20of%20virology&rft.au=Agostini,%20Maria%20L.&rft.date=2019-12-15&rft.volume=93&rft.issue=24&rft.issn=0022-538X&rft.eissn=1098-5514&rft_id=info:doi/10.1128/JVI.01348-19&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_6880162%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31578288&rfr_iscdi=true |