Origin of conformational dynamics in a globular protein
Protein structures are dynamic, undergoing motions that can play a vital role in function. However, the link between primary sequence and conformational dynamics remains poorly understood. Here, we studied how conformational dynamics can arise in a globular protein by evaluating the impact of indivi...
Gespeichert in:
Veröffentlicht in: | Communications biology 2019-11, Vol.2 (1), p.433, Article 433 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 433 |
container_title | Communications biology |
container_volume | 2 |
creator | Damry, Adam M. Mayer, Marc M. Broom, Aron Goto, Natalie K. Chica, Roberto A. |
description | Protein structures are dynamic, undergoing motions that can play a vital role in function. However, the link between primary sequence and conformational dynamics remains poorly understood. Here, we studied how conformational dynamics can arise in a globular protein by evaluating the impact of individual core-residue substitutions in DANCER-3, a streptococcal protein G domain β1 variant that we previously designed to undergo a specific mode of conformational exchange that has never been observed in the wild-type protein. Using a combination of solution NMR experiments and molecular dynamics simulations, we demonstrate that only two mutations are necessary to create this conformational exchange, and that these mutations work synergistically, with one destabilizing the native structure and the other allowing two new conformational states to be accessed on the energy landscape. Overall, our results show how dynamics can appear in a stable globular fold, a critical step in the molecular evolution of dynamics-linked functions.
Damry et al. evaluates the impact of individual substitutions in primary sequence of a globular protein on its conformational dynamics. They demonstrate that only two mutations in core residues of a streptococcal protein (Gβ1) variant can synergistically create conformational exchange, one destabilizing the native structure while the other allowing two new conformational states to be accessed on the energy landscape. |
doi_str_mv | 10.1038/s42003-019-0681-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6879633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389678110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-c7e11788a47a54ceb064361e4538e2c4329cd043f490afcfd39a1082962db80b3</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMottT-ADcy4MbNaF7NJBtBii8odKPrkMlkaspMUpMZof_elKn1Aa4SOF9O7j0HgHMErxEk_CZSDCHJIRI5ZBzl-AiMMREiJ4zi4x_3EZjGuIYwkUIwQk_BiKBCCEpmY1Asg11Zl_k6097VPrSqs96pJqu2TrVWxyypKls1vuwbFbJN8J2x7gyc1KqJZro_J-D14f5l_pQvlo_P87tFrmkBu1wXBqGCc0ULNaPalJBRwpChM8IN1pRgoStISU0FVLWuKyIUghwLhquSw5JMwO3gu-nL1lTauC6oRm6CbVXYSq-s_K04-yZX_kMyXqRlSTK42hsE_96b2MnWRm2aRjnj-ygxwYgxDBFO6OUfdO37kLLYUVywgqOU_ASggdLBxxhMfRgGQblrRg7NyJS33DUjd84XP7c4vPjqIQF4AGKS3MqE76__d_0Ez32YAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389678110</pqid></control><display><type>article</type><title>Origin of conformational dynamics in a globular protein</title><source>Nature_OA刊</source><source>MEDLINE</source><source>PubMed Central(OpenAccess)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Damry, Adam M. ; Mayer, Marc M. ; Broom, Aron ; Goto, Natalie K. ; Chica, Roberto A.</creator><creatorcontrib>Damry, Adam M. ; Mayer, Marc M. ; Broom, Aron ; Goto, Natalie K. ; Chica, Roberto A.</creatorcontrib><description>Protein structures are dynamic, undergoing motions that can play a vital role in function. However, the link between primary sequence and conformational dynamics remains poorly understood. Here, we studied how conformational dynamics can arise in a globular protein by evaluating the impact of individual core-residue substitutions in DANCER-3, a streptococcal protein G domain β1 variant that we previously designed to undergo a specific mode of conformational exchange that has never been observed in the wild-type protein. Using a combination of solution NMR experiments and molecular dynamics simulations, we demonstrate that only two mutations are necessary to create this conformational exchange, and that these mutations work synergistically, with one destabilizing the native structure and the other allowing two new conformational states to be accessed on the energy landscape. Overall, our results show how dynamics can appear in a stable globular fold, a critical step in the molecular evolution of dynamics-linked functions.
Damry et al. evaluates the impact of individual substitutions in primary sequence of a globular protein on its conformational dynamics. They demonstrate that only two mutations in core residues of a streptococcal protein (Gβ1) variant can synergistically create conformational exchange, one destabilizing the native structure while the other allowing two new conformational states to be accessed on the energy landscape.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-019-0681-2</identifier><identifier>PMID: 31799435</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/535/878/1263 ; 631/57/2272/2273 ; 82/6 ; 82/80 ; 82/83 ; Amino acid sequence ; Bacterial Proteins - chemistry ; Biology ; Biomedical and Life Sciences ; Life Sciences ; Molecular Dynamics Simulation ; Molecular evolution ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein G ; Proteins ; Proteins - chemistry ; Proteins - genetics ; Recombinant Proteins ; Streptococcal protein G ; Structure-Activity Relationship</subject><ispartof>Communications biology, 2019-11, Vol.2 (1), p.433, Article 433</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019.</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-c7e11788a47a54ceb064361e4538e2c4329cd043f490afcfd39a1082962db80b3</citedby><cites>FETCH-LOGICAL-c470t-c7e11788a47a54ceb064361e4538e2c4329cd043f490afcfd39a1082962db80b3</cites><orcidid>0000-0003-3789-9841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879633/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879633/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31799435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Damry, Adam M.</creatorcontrib><creatorcontrib>Mayer, Marc M.</creatorcontrib><creatorcontrib>Broom, Aron</creatorcontrib><creatorcontrib>Goto, Natalie K.</creatorcontrib><creatorcontrib>Chica, Roberto A.</creatorcontrib><title>Origin of conformational dynamics in a globular protein</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Protein structures are dynamic, undergoing motions that can play a vital role in function. However, the link between primary sequence and conformational dynamics remains poorly understood. Here, we studied how conformational dynamics can arise in a globular protein by evaluating the impact of individual core-residue substitutions in DANCER-3, a streptococcal protein G domain β1 variant that we previously designed to undergo a specific mode of conformational exchange that has never been observed in the wild-type protein. Using a combination of solution NMR experiments and molecular dynamics simulations, we demonstrate that only two mutations are necessary to create this conformational exchange, and that these mutations work synergistically, with one destabilizing the native structure and the other allowing two new conformational states to be accessed on the energy landscape. Overall, our results show how dynamics can appear in a stable globular fold, a critical step in the molecular evolution of dynamics-linked functions.
Damry et al. evaluates the impact of individual substitutions in primary sequence of a globular protein on its conformational dynamics. They demonstrate that only two mutations in core residues of a streptococcal protein (Gβ1) variant can synergistically create conformational exchange, one destabilizing the native structure while the other allowing two new conformational states to be accessed on the energy landscape.</description><subject>631/535/878/1263</subject><subject>631/57/2272/2273</subject><subject>82/6</subject><subject>82/80</subject><subject>82/83</subject><subject>Amino acid sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Life Sciences</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular evolution</subject><subject>Mutation</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Protein Conformation</subject><subject>Protein G</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Recombinant Proteins</subject><subject>Streptococcal protein G</subject><subject>Structure-Activity Relationship</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtLAzEUhYMottT-ADcy4MbNaF7NJBtBii8odKPrkMlkaspMUpMZof_elKn1Aa4SOF9O7j0HgHMErxEk_CZSDCHJIRI5ZBzl-AiMMREiJ4zi4x_3EZjGuIYwkUIwQk_BiKBCCEpmY1Asg11Zl_k6097VPrSqs96pJqu2TrVWxyypKls1vuwbFbJN8J2x7gyc1KqJZro_J-D14f5l_pQvlo_P87tFrmkBu1wXBqGCc0ULNaPalJBRwpChM8IN1pRgoStISU0FVLWuKyIUghwLhquSw5JMwO3gu-nL1lTauC6oRm6CbVXYSq-s_K04-yZX_kMyXqRlSTK42hsE_96b2MnWRm2aRjnj-ygxwYgxDBFO6OUfdO37kLLYUVywgqOU_ASggdLBxxhMfRgGQblrRg7NyJS33DUjd84XP7c4vPjqIQF4AGKS3MqE76__d_0Ez32YAA</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>Damry, Adam M.</creator><creator>Mayer, Marc M.</creator><creator>Broom, Aron</creator><creator>Goto, Natalie K.</creator><creator>Chica, Roberto A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3789-9841</orcidid></search><sort><creationdate>20191126</creationdate><title>Origin of conformational dynamics in a globular protein</title><author>Damry, Adam M. ; Mayer, Marc M. ; Broom, Aron ; Goto, Natalie K. ; Chica, Roberto A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-c7e11788a47a54ceb064361e4538e2c4329cd043f490afcfd39a1082962db80b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/535/878/1263</topic><topic>631/57/2272/2273</topic><topic>82/6</topic><topic>82/80</topic><topic>82/83</topic><topic>Amino acid sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Life Sciences</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular evolution</topic><topic>Mutation</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Protein Conformation</topic><topic>Protein G</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Recombinant Proteins</topic><topic>Streptococcal protein G</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damry, Adam M.</creatorcontrib><creatorcontrib>Mayer, Marc M.</creatorcontrib><creatorcontrib>Broom, Aron</creatorcontrib><creatorcontrib>Goto, Natalie K.</creatorcontrib><creatorcontrib>Chica, Roberto A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damry, Adam M.</au><au>Mayer, Marc M.</au><au>Broom, Aron</au><au>Goto, Natalie K.</au><au>Chica, Roberto A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of conformational dynamics in a globular protein</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2019-11-26</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><spage>433</spage><pages>433-</pages><artnum>433</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Protein structures are dynamic, undergoing motions that can play a vital role in function. However, the link between primary sequence and conformational dynamics remains poorly understood. Here, we studied how conformational dynamics can arise in a globular protein by evaluating the impact of individual core-residue substitutions in DANCER-3, a streptococcal protein G domain β1 variant that we previously designed to undergo a specific mode of conformational exchange that has never been observed in the wild-type protein. Using a combination of solution NMR experiments and molecular dynamics simulations, we demonstrate that only two mutations are necessary to create this conformational exchange, and that these mutations work synergistically, with one destabilizing the native structure and the other allowing two new conformational states to be accessed on the energy landscape. Overall, our results show how dynamics can appear in a stable globular fold, a critical step in the molecular evolution of dynamics-linked functions.
Damry et al. evaluates the impact of individual substitutions in primary sequence of a globular protein on its conformational dynamics. They demonstrate that only two mutations in core residues of a streptococcal protein (Gβ1) variant can synergistically create conformational exchange, one destabilizing the native structure while the other allowing two new conformational states to be accessed on the energy landscape.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31799435</pmid><doi>10.1038/s42003-019-0681-2</doi><orcidid>https://orcid.org/0000-0003-3789-9841</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2019-11, Vol.2 (1), p.433, Article 433 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6879633 |
source | Nature_OA刊; MEDLINE; PubMed Central(OpenAccess); DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | 631/535/878/1263 631/57/2272/2273 82/6 82/80 82/83 Amino acid sequence Bacterial Proteins - chemistry Biology Biomedical and Life Sciences Life Sciences Molecular Dynamics Simulation Molecular evolution Mutation Nuclear Magnetic Resonance, Biomolecular Protein Conformation Protein G Proteins Proteins - chemistry Proteins - genetics Recombinant Proteins Streptococcal protein G Structure-Activity Relationship |
title | Origin of conformational dynamics in a globular protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20conformational%20dynamics%20in%20a%20globular%20protein&rft.jtitle=Communications%20biology&rft.au=Damry,%20Adam%20M.&rft.date=2019-11-26&rft.volume=2&rft.issue=1&rft.spage=433&rft.pages=433-&rft.artnum=433&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-019-0681-2&rft_dat=%3Cproquest_pubme%3E2389678110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389678110&rft_id=info:pmid/31799435&rfr_iscdi=true |