Diagnosis of Liver Neoplasms by Computational and Statistical Image Analysis

Distinguishing well-differentiated hepatocellular carcinoma (WD-HCC), hepatocellular adenoma (HA) and non-neoplastic liver tissue (NNLT) solely on morphology is often challenging. The purpose of this study was to evaluate the use of computational image analysis to distinguish WD-HCC, HA and NNLT. Se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gastroenterology research 2019-12, Vol.12 (6), p.288-298
Hauptverfasser: Xia, Rong, Boroujeni, Amir M, Shea, Stephanie, Pan, Yongsheng, Agrawal, Raag, Yousefi, Elhem, Fiel, M Isabel, Haseeb, M A, Gupta, Raavi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 6
container_start_page 288
container_title Gastroenterology research
container_volume 12
creator Xia, Rong
Boroujeni, Amir M
Shea, Stephanie
Pan, Yongsheng
Agrawal, Raag
Yousefi, Elhem
Fiel, M Isabel
Haseeb, M A
Gupta, Raavi
description Distinguishing well-differentiated hepatocellular carcinoma (WD-HCC), hepatocellular adenoma (HA) and non-neoplastic liver tissue (NNLT) solely on morphology is often challenging. The purpose of this study was to evaluate the use of computational image analysis to distinguish WD-HCC, HA and NNLT. Seventy-seven cases comprising of WD-HCC (n = 26), HA (n = 23) and NNLT (n = 28) were retrieved and reviewed. A total of 485 hematoxylin and eosin (H&E) photomicrographs (× 400, 0.09 µm ) of WD-HCC (n = 183), HA (n = 173), NNLT (n = 129) and nine whole-slide scans (three of each diagnosis) were obtained, color deconvoluted and digitally transformed. Quantitative data including nuclear density, nuclear sphericity, nuclear perimeter, and nuclear eccentricity from each image were acquired. The data were analyzed by one-way analysis of variance (ANOVA) with Tukey test, followed by unsupervised and supervised (Chi-square automatic interaction detection (CHAID)) cluster analysis. Unsupervised cluster analysis identified three well defined clusters of WD-HCC, HA and NNLT. Employing the four most discriminating nuclear features, supervised analysis was performed on a training set of 383 images, and validated on the remaining 102 test images. The analysis identified WD-HCC (sensitivity 100%, specificity 98%), HA (sensitivity 71%, specificity 85%) and NNLT (sensitivity 70%, specificity 86%). An analysis of whole-slide images identified WD-HCC with sensitivity and specificity of 100%. We have successfully demonstrated that computational image analysis of nuclear features can differentiate WD-HCC from non-malignant liver with high accuracy, and can be used to assist in the histopathological diagnosis of hepatocellular carcinoma.
doi_str_mv 10.14740/gr1210
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6879028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322137414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-7f63ce7a7da23ee353598f6ae061df3adc566973e09bc34520636f2a418229c83</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhC0EolWpeAPkG1wCtjexnQtSVf4qVXAAzpbrOMEoiUOcVOrbk9JSwV52Rzv6djUInVNyTWMRk5uipYySIzSmKZURkxSODzNJRmgawifZliCJlKdoBFQSACLHaHnndFH74AL2OV66tW3xs_VNqUMV8GqD575q-k53zte6xLrO8OtWhc6ZQS8qXVg8G1abAXGGTnJdBjvd9wl6f7h_mz9Fy5fHxXy2jAzjvItEzsFYoUWmGVgLCSSpzLm2hNMsB52ZhPNUgCXpykCcMMKB50zHVDKWGgkTdLvjNv2qspmxddfqUjWtq3S7UV479X9Tuw9V-LXiUqSEbQFXe0Drv3obOlW5YGxZ6tr6PigGjFEQMY0H6-XOalofQmvzwxlK1E_8ahf_4Lz4-9XB9xs2fAMdh3_3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322137414</pqid></control><display><type>article</type><title>Diagnosis of Liver Neoplasms by Computational and Statistical Image Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Xia, Rong ; Boroujeni, Amir M ; Shea, Stephanie ; Pan, Yongsheng ; Agrawal, Raag ; Yousefi, Elhem ; Fiel, M Isabel ; Haseeb, M A ; Gupta, Raavi</creator><creatorcontrib>Xia, Rong ; Boroujeni, Amir M ; Shea, Stephanie ; Pan, Yongsheng ; Agrawal, Raag ; Yousefi, Elhem ; Fiel, M Isabel ; Haseeb, M A ; Gupta, Raavi</creatorcontrib><description>Distinguishing well-differentiated hepatocellular carcinoma (WD-HCC), hepatocellular adenoma (HA) and non-neoplastic liver tissue (NNLT) solely on morphology is often challenging. The purpose of this study was to evaluate the use of computational image analysis to distinguish WD-HCC, HA and NNLT. Seventy-seven cases comprising of WD-HCC (n = 26), HA (n = 23) and NNLT (n = 28) were retrieved and reviewed. A total of 485 hematoxylin and eosin (H&amp;E) photomicrographs (× 400, 0.09 µm ) of WD-HCC (n = 183), HA (n = 173), NNLT (n = 129) and nine whole-slide scans (three of each diagnosis) were obtained, color deconvoluted and digitally transformed. Quantitative data including nuclear density, nuclear sphericity, nuclear perimeter, and nuclear eccentricity from each image were acquired. The data were analyzed by one-way analysis of variance (ANOVA) with Tukey test, followed by unsupervised and supervised (Chi-square automatic interaction detection (CHAID)) cluster analysis. Unsupervised cluster analysis identified three well defined clusters of WD-HCC, HA and NNLT. Employing the four most discriminating nuclear features, supervised analysis was performed on a training set of 383 images, and validated on the remaining 102 test images. The analysis identified WD-HCC (sensitivity 100%, specificity 98%), HA (sensitivity 71%, specificity 85%) and NNLT (sensitivity 70%, specificity 86%). An analysis of whole-slide images identified WD-HCC with sensitivity and specificity of 100%. We have successfully demonstrated that computational image analysis of nuclear features can differentiate WD-HCC from non-malignant liver with high accuracy, and can be used to assist in the histopathological diagnosis of hepatocellular carcinoma.</description><identifier>ISSN: 1918-2805</identifier><identifier>EISSN: 1918-2813</identifier><identifier>DOI: 10.14740/gr1210</identifier><identifier>PMID: 31803308</identifier><language>eng</language><publisher>Canada: Elmer Press</publisher><subject>Original</subject><ispartof>Gastroenterology research, 2019-12, Vol.12 (6), p.288-298</ispartof><rights>Copyright 2019, Xia et al.</rights><rights>Copyright 2019, Xia et al. 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-7f63ce7a7da23ee353598f6ae061df3adc566973e09bc34520636f2a418229c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879028/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879028/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53768,53770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31803308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Rong</creatorcontrib><creatorcontrib>Boroujeni, Amir M</creatorcontrib><creatorcontrib>Shea, Stephanie</creatorcontrib><creatorcontrib>Pan, Yongsheng</creatorcontrib><creatorcontrib>Agrawal, Raag</creatorcontrib><creatorcontrib>Yousefi, Elhem</creatorcontrib><creatorcontrib>Fiel, M Isabel</creatorcontrib><creatorcontrib>Haseeb, M A</creatorcontrib><creatorcontrib>Gupta, Raavi</creatorcontrib><title>Diagnosis of Liver Neoplasms by Computational and Statistical Image Analysis</title><title>Gastroenterology research</title><addtitle>Gastroenterology Res</addtitle><description>Distinguishing well-differentiated hepatocellular carcinoma (WD-HCC), hepatocellular adenoma (HA) and non-neoplastic liver tissue (NNLT) solely on morphology is often challenging. The purpose of this study was to evaluate the use of computational image analysis to distinguish WD-HCC, HA and NNLT. Seventy-seven cases comprising of WD-HCC (n = 26), HA (n = 23) and NNLT (n = 28) were retrieved and reviewed. A total of 485 hematoxylin and eosin (H&amp;E) photomicrographs (× 400, 0.09 µm ) of WD-HCC (n = 183), HA (n = 173), NNLT (n = 129) and nine whole-slide scans (three of each diagnosis) were obtained, color deconvoluted and digitally transformed. Quantitative data including nuclear density, nuclear sphericity, nuclear perimeter, and nuclear eccentricity from each image were acquired. The data were analyzed by one-way analysis of variance (ANOVA) with Tukey test, followed by unsupervised and supervised (Chi-square automatic interaction detection (CHAID)) cluster analysis. Unsupervised cluster analysis identified three well defined clusters of WD-HCC, HA and NNLT. Employing the four most discriminating nuclear features, supervised analysis was performed on a training set of 383 images, and validated on the remaining 102 test images. The analysis identified WD-HCC (sensitivity 100%, specificity 98%), HA (sensitivity 71%, specificity 85%) and NNLT (sensitivity 70%, specificity 86%). An analysis of whole-slide images identified WD-HCC with sensitivity and specificity of 100%. We have successfully demonstrated that computational image analysis of nuclear features can differentiate WD-HCC from non-malignant liver with high accuracy, and can be used to assist in the histopathological diagnosis of hepatocellular carcinoma.</description><subject>Original</subject><issn>1918-2805</issn><issn>1918-2813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkM1OwzAQhC0EolWpeAPkG1wCtjexnQtSVf4qVXAAzpbrOMEoiUOcVOrbk9JSwV52Rzv6djUInVNyTWMRk5uipYySIzSmKZURkxSODzNJRmgawifZliCJlKdoBFQSACLHaHnndFH74AL2OV66tW3xs_VNqUMV8GqD575q-k53zte6xLrO8OtWhc6ZQS8qXVg8G1abAXGGTnJdBjvd9wl6f7h_mz9Fy5fHxXy2jAzjvItEzsFYoUWmGVgLCSSpzLm2hNMsB52ZhPNUgCXpykCcMMKB50zHVDKWGgkTdLvjNv2qspmxddfqUjWtq3S7UV479X9Tuw9V-LXiUqSEbQFXe0Drv3obOlW5YGxZ6tr6PigGjFEQMY0H6-XOalofQmvzwxlK1E_8ahf_4Lz4-9XB9xs2fAMdh3_3</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Xia, Rong</creator><creator>Boroujeni, Amir M</creator><creator>Shea, Stephanie</creator><creator>Pan, Yongsheng</creator><creator>Agrawal, Raag</creator><creator>Yousefi, Elhem</creator><creator>Fiel, M Isabel</creator><creator>Haseeb, M A</creator><creator>Gupta, Raavi</creator><general>Elmer Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191201</creationdate><title>Diagnosis of Liver Neoplasms by Computational and Statistical Image Analysis</title><author>Xia, Rong ; Boroujeni, Amir M ; Shea, Stephanie ; Pan, Yongsheng ; Agrawal, Raag ; Yousefi, Elhem ; Fiel, M Isabel ; Haseeb, M A ; Gupta, Raavi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-7f63ce7a7da23ee353598f6ae061df3adc566973e09bc34520636f2a418229c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Original</topic><toplevel>online_resources</toplevel><creatorcontrib>Xia, Rong</creatorcontrib><creatorcontrib>Boroujeni, Amir M</creatorcontrib><creatorcontrib>Shea, Stephanie</creatorcontrib><creatorcontrib>Pan, Yongsheng</creatorcontrib><creatorcontrib>Agrawal, Raag</creatorcontrib><creatorcontrib>Yousefi, Elhem</creatorcontrib><creatorcontrib>Fiel, M Isabel</creatorcontrib><creatorcontrib>Haseeb, M A</creatorcontrib><creatorcontrib>Gupta, Raavi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gastroenterology research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Rong</au><au>Boroujeni, Amir M</au><au>Shea, Stephanie</au><au>Pan, Yongsheng</au><au>Agrawal, Raag</au><au>Yousefi, Elhem</au><au>Fiel, M Isabel</au><au>Haseeb, M A</au><au>Gupta, Raavi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis of Liver Neoplasms by Computational and Statistical Image Analysis</atitle><jtitle>Gastroenterology research</jtitle><addtitle>Gastroenterology Res</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>12</volume><issue>6</issue><spage>288</spage><epage>298</epage><pages>288-298</pages><issn>1918-2805</issn><eissn>1918-2813</eissn><abstract>Distinguishing well-differentiated hepatocellular carcinoma (WD-HCC), hepatocellular adenoma (HA) and non-neoplastic liver tissue (NNLT) solely on morphology is often challenging. The purpose of this study was to evaluate the use of computational image analysis to distinguish WD-HCC, HA and NNLT. Seventy-seven cases comprising of WD-HCC (n = 26), HA (n = 23) and NNLT (n = 28) were retrieved and reviewed. A total of 485 hematoxylin and eosin (H&amp;E) photomicrographs (× 400, 0.09 µm ) of WD-HCC (n = 183), HA (n = 173), NNLT (n = 129) and nine whole-slide scans (three of each diagnosis) were obtained, color deconvoluted and digitally transformed. Quantitative data including nuclear density, nuclear sphericity, nuclear perimeter, and nuclear eccentricity from each image were acquired. The data were analyzed by one-way analysis of variance (ANOVA) with Tukey test, followed by unsupervised and supervised (Chi-square automatic interaction detection (CHAID)) cluster analysis. Unsupervised cluster analysis identified three well defined clusters of WD-HCC, HA and NNLT. Employing the four most discriminating nuclear features, supervised analysis was performed on a training set of 383 images, and validated on the remaining 102 test images. The analysis identified WD-HCC (sensitivity 100%, specificity 98%), HA (sensitivity 71%, specificity 85%) and NNLT (sensitivity 70%, specificity 86%). An analysis of whole-slide images identified WD-HCC with sensitivity and specificity of 100%. We have successfully demonstrated that computational image analysis of nuclear features can differentiate WD-HCC from non-malignant liver with high accuracy, and can be used to assist in the histopathological diagnosis of hepatocellular carcinoma.</abstract><cop>Canada</cop><pub>Elmer Press</pub><pmid>31803308</pmid><doi>10.14740/gr1210</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1918-2805
ispartof Gastroenterology research, 2019-12, Vol.12 (6), p.288-298
issn 1918-2805
1918-2813
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6879028
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Original
title Diagnosis of Liver Neoplasms by Computational and Statistical Image Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis%20of%20Liver%20Neoplasms%20by%20Computational%20and%20Statistical%20Image%20Analysis&rft.jtitle=Gastroenterology%20research&rft.au=Xia,%20Rong&rft.date=2019-12-01&rft.volume=12&rft.issue=6&rft.spage=288&rft.epage=298&rft.pages=288-298&rft.issn=1918-2805&rft.eissn=1918-2813&rft_id=info:doi/10.14740/gr1210&rft_dat=%3Cproquest_pubme%3E2322137414%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322137414&rft_id=info:pmid/31803308&rfr_iscdi=true