A single combination gene therapy treats multiple age-related diseases
Comorbidity is common as age increases, and currently prescribed treatments often ignore the interconnectedness of the involved age-related diseases. The presence of any one such disease usually increases the risk of having others, and new approaches will be more effective at increasing an individua...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-11, Vol.116 (47), p.23505-23511 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23511 |
---|---|
container_issue | 47 |
container_start_page | 23505 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Davidsohn, Noah Pezzone, Matthew Vernet, Andyna Graveline, Amanda Oliver, Daniel Slomovic, Shimyn Punthambaker, Sukanya Sun, Xiaoming Liao, Ronglih Bonventre, Joseph V. Church, George M. |
description | Comorbidity is common as age increases, and currently prescribed treatments often ignore the interconnectedness of the involved age-related diseases. The presence of any one such disease usually increases the risk of having others, and new approaches will be more effective at increasing an individual’s health span by taking this systems-level view into account. In this study, we developed gene therapies based on 3 longevity associated genes (fibroblast growth factor 21 [FGF21], αKlotho, soluble form of mouse transforming growth factor-β receptor 2 [sTGFβR2]) delivered using adeno-associated viruses and explored their ability to mitigate 4 age-related diseases: obesity, type II diabetes, heart failure, and renal failure. Individually and combinatorially, we applied these therapies to disease-specific mouse models and found that this set of diverse pathologies could be effectively treated and in some cases, even reversed with a single dose. We observed a 58% increase in heart function in ascending aortic constriction ensuing heart failure, a 38% reduction in α-smooth muscle actin (αSMA) expression, and a 75% reduction in renal medullary atrophy in mice subjected to unilateral ureteral obstruction and a complete reversal of obesity and diabetes phenotypes in mice fed a constant high-fat diet. Crucially, we discovered that a single formulation combining 2 separate therapies into 1 was able to treat all 4 diseases. These results emphasize the promise of gene therapy for treating diverse age-related ailments and demonstrate the potential of combination gene therapy that may improve health span and longevity by addressing multiple diseases at once. |
doi_str_mv | 10.1073/pnas.1910073116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6876218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26861934</jstor_id><sourcerecordid>26861934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c46b68ca234a153aa736e4cb0caf0cee4eb0fee4c9c651bca3553ff7a33669da3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZpzz21GHrpxclIsmT5UgihSQuBXtqzGGvHGy225EpyIf99vWy6_TgNw_vNYx6PsTccLjm08moOmC95x2FdONfP2IZDx2vddPCcbQBEW5tGNGfsPOc9AHTKwEt2Jrk2SguzYbfXVfZhN1Ll4tT7gMXHUO0oUFUeKOH8WJVEWHI1LWPx8wrijupEIxbaVlufCTPlV-zFgGOm10_zgn2__fTt5nN9__Xuy831fe0UdKV2je61cShkg1xJxFZqalwPDgdwRA31MKzDdU4r3juUSslhaFFKrbstygv28eg7L_1EW0ehJBztnPyE6dFG9PZfJfgHu4s_rTatFtysBh-eDFL8sVAudvLZ0ThioLhkKyQXwoASekXf_4fu45LCGu9A6bZV0hyoqyPlUsw50XB6hoM9dGQPHdk_Ha0X7_7OcOJ_l7ICb4_APpeYTrrQRvNONvIX1YuYqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316775386</pqid></control><display><type>article</type><title>A single combination gene therapy treats multiple age-related diseases</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Davidsohn, Noah ; Pezzone, Matthew ; Vernet, Andyna ; Graveline, Amanda ; Oliver, Daniel ; Slomovic, Shimyn ; Punthambaker, Sukanya ; Sun, Xiaoming ; Liao, Ronglih ; Bonventre, Joseph V. ; Church, George M.</creator><creatorcontrib>Davidsohn, Noah ; Pezzone, Matthew ; Vernet, Andyna ; Graveline, Amanda ; Oliver, Daniel ; Slomovic, Shimyn ; Punthambaker, Sukanya ; Sun, Xiaoming ; Liao, Ronglih ; Bonventre, Joseph V. ; Church, George M.</creatorcontrib><description>Comorbidity is common as age increases, and currently prescribed treatments often ignore the interconnectedness of the involved age-related diseases. The presence of any one such disease usually increases the risk of having others, and new approaches will be more effective at increasing an individual’s health span by taking this systems-level view into account. In this study, we developed gene therapies based on 3 longevity associated genes (fibroblast growth factor 21 [FGF21], αKlotho, soluble form of mouse transforming growth factor-β receptor 2 [sTGFβR2]) delivered using adeno-associated viruses and explored their ability to mitigate 4 age-related diseases: obesity, type II diabetes, heart failure, and renal failure. Individually and combinatorially, we applied these therapies to disease-specific mouse models and found that this set of diverse pathologies could be effectively treated and in some cases, even reversed with a single dose. We observed a 58% increase in heart function in ascending aortic constriction ensuing heart failure, a 38% reduction in α-smooth muscle actin (αSMA) expression, and a 75% reduction in renal medullary atrophy in mice subjected to unilateral ureteral obstruction and a complete reversal of obesity and diabetes phenotypes in mice fed a constant high-fat diet. Crucially, we discovered that a single formulation combining 2 separate therapies into 1 was able to treat all 4 diseases. These results emphasize the promise of gene therapy for treating diverse age-related ailments and demonstrate the potential of combination gene therapy that may improve health span and longevity by addressing multiple diseases at once.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1910073116</identifier><identifier>PMID: 31685628</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin ; Age ; Age related diseases ; Aging ; Animal models ; Animals ; Aorta ; Atrophy ; Biological Sciences ; Congestive heart failure ; Dependovirus - genetics ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - etiology ; Diabetes Mellitus, Experimental - therapy ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; Fibroblast growth factors ; Fibroblast Growth Factors - physiology ; Fibrosis ; Gene therapy ; Genetic Therapy ; Genetic Vectors - therapeutic use ; Glucuronidase - blood ; Glucuronidase - genetics ; Glucuronidase - physiology ; Growth factors ; Heart failure ; Heart Failure - therapy ; Heart function ; High fat diet ; Insulin Resistance ; Kidney Failure, Chronic - etiology ; Kidney Failure, Chronic - pathology ; Kidney Failure, Chronic - therapy ; Kidney Medulla - pathology ; Longevity ; Longevity - genetics ; Male ; Mice, Inbred C57BL ; Muscles ; Obesity ; Obesity - etiology ; Obesity - therapy ; Phenotype ; Phenotypes ; Receptor, Transforming Growth Factor-beta Type II - genetics ; Receptor, Transforming Growth Factor-beta Type II - physiology ; Reduction ; Renal failure ; Smooth muscle ; System effectiveness ; Transforming Growth Factor beta1 - blood ; Transforming Growth Factor beta1 - genetics ; Transforming Growth Factor beta1 - physiology ; Transforming growth factor-b ; Ureteral Obstruction - complications</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (47), p.23505-23511</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Nov 19, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c46b68ca234a153aa736e4cb0caf0cee4eb0fee4c9c651bca3553ff7a33669da3</citedby><cites>FETCH-LOGICAL-c509t-c46b68ca234a153aa736e4cb0caf0cee4eb0fee4c9c651bca3553ff7a33669da3</cites><orcidid>0000-0003-3535-2076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26861934$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26861934$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31685628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davidsohn, Noah</creatorcontrib><creatorcontrib>Pezzone, Matthew</creatorcontrib><creatorcontrib>Vernet, Andyna</creatorcontrib><creatorcontrib>Graveline, Amanda</creatorcontrib><creatorcontrib>Oliver, Daniel</creatorcontrib><creatorcontrib>Slomovic, Shimyn</creatorcontrib><creatorcontrib>Punthambaker, Sukanya</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Liao, Ronglih</creatorcontrib><creatorcontrib>Bonventre, Joseph V.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><title>A single combination gene therapy treats multiple age-related diseases</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Comorbidity is common as age increases, and currently prescribed treatments often ignore the interconnectedness of the involved age-related diseases. The presence of any one such disease usually increases the risk of having others, and new approaches will be more effective at increasing an individual’s health span by taking this systems-level view into account. In this study, we developed gene therapies based on 3 longevity associated genes (fibroblast growth factor 21 [FGF21], αKlotho, soluble form of mouse transforming growth factor-β receptor 2 [sTGFβR2]) delivered using adeno-associated viruses and explored their ability to mitigate 4 age-related diseases: obesity, type II diabetes, heart failure, and renal failure. Individually and combinatorially, we applied these therapies to disease-specific mouse models and found that this set of diverse pathologies could be effectively treated and in some cases, even reversed with a single dose. We observed a 58% increase in heart function in ascending aortic constriction ensuing heart failure, a 38% reduction in α-smooth muscle actin (αSMA) expression, and a 75% reduction in renal medullary atrophy in mice subjected to unilateral ureteral obstruction and a complete reversal of obesity and diabetes phenotypes in mice fed a constant high-fat diet. Crucially, we discovered that a single formulation combining 2 separate therapies into 1 was able to treat all 4 diseases. These results emphasize the promise of gene therapy for treating diverse age-related ailments and demonstrate the potential of combination gene therapy that may improve health span and longevity by addressing multiple diseases at once.</description><subject>Actin</subject><subject>Age</subject><subject>Age related diseases</subject><subject>Aging</subject><subject>Animal models</subject><subject>Animals</subject><subject>Aorta</subject><subject>Atrophy</subject><subject>Biological Sciences</subject><subject>Congestive heart failure</subject><subject>Dependovirus - genetics</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - etiology</subject><subject>Diabetes Mellitus, Experimental - therapy</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Fibroblast growth factors</subject><subject>Fibroblast Growth Factors - physiology</subject><subject>Fibrosis</subject><subject>Gene therapy</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors - therapeutic use</subject><subject>Glucuronidase - blood</subject><subject>Glucuronidase - genetics</subject><subject>Glucuronidase - physiology</subject><subject>Growth factors</subject><subject>Heart failure</subject><subject>Heart Failure - therapy</subject><subject>Heart function</subject><subject>High fat diet</subject><subject>Insulin Resistance</subject><subject>Kidney Failure, Chronic - etiology</subject><subject>Kidney Failure, Chronic - pathology</subject><subject>Kidney Failure, Chronic - therapy</subject><subject>Kidney Medulla - pathology</subject><subject>Longevity</subject><subject>Longevity - genetics</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Muscles</subject><subject>Obesity</subject><subject>Obesity - etiology</subject><subject>Obesity - therapy</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Receptor, Transforming Growth Factor-beta Type II - genetics</subject><subject>Receptor, Transforming Growth Factor-beta Type II - physiology</subject><subject>Reduction</subject><subject>Renal failure</subject><subject>Smooth muscle</subject><subject>System effectiveness</subject><subject>Transforming Growth Factor beta1 - blood</subject><subject>Transforming Growth Factor beta1 - genetics</subject><subject>Transforming Growth Factor beta1 - physiology</subject><subject>Transforming growth factor-b</subject><subject>Ureteral Obstruction - complications</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaTZpzz21GHrpxclIsmT5UgihSQuBXtqzGGvHGy225EpyIf99vWy6_TgNw_vNYx6PsTccLjm08moOmC95x2FdONfP2IZDx2vddPCcbQBEW5tGNGfsPOc9AHTKwEt2Jrk2SguzYbfXVfZhN1Ll4tT7gMXHUO0oUFUeKOH8WJVEWHI1LWPx8wrijupEIxbaVlufCTPlV-zFgGOm10_zgn2__fTt5nN9__Xuy831fe0UdKV2je61cShkg1xJxFZqalwPDgdwRA31MKzDdU4r3juUSslhaFFKrbstygv28eg7L_1EW0ehJBztnPyE6dFG9PZfJfgHu4s_rTatFtysBh-eDFL8sVAudvLZ0ThioLhkKyQXwoASekXf_4fu45LCGu9A6bZV0hyoqyPlUsw50XB6hoM9dGQPHdk_Ha0X7_7OcOJ_l7ICb4_APpeYTrrQRvNONvIX1YuYqQ</recordid><startdate>20191119</startdate><enddate>20191119</enddate><creator>Davidsohn, Noah</creator><creator>Pezzone, Matthew</creator><creator>Vernet, Andyna</creator><creator>Graveline, Amanda</creator><creator>Oliver, Daniel</creator><creator>Slomovic, Shimyn</creator><creator>Punthambaker, Sukanya</creator><creator>Sun, Xiaoming</creator><creator>Liao, Ronglih</creator><creator>Bonventre, Joseph V.</creator><creator>Church, George M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3535-2076</orcidid></search><sort><creationdate>20191119</creationdate><title>A single combination gene therapy treats multiple age-related diseases</title><author>Davidsohn, Noah ; Pezzone, Matthew ; Vernet, Andyna ; Graveline, Amanda ; Oliver, Daniel ; Slomovic, Shimyn ; Punthambaker, Sukanya ; Sun, Xiaoming ; Liao, Ronglih ; Bonventre, Joseph V. ; Church, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c46b68ca234a153aa736e4cb0caf0cee4eb0fee4c9c651bca3553ff7a33669da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actin</topic><topic>Age</topic><topic>Age related diseases</topic><topic>Aging</topic><topic>Animal models</topic><topic>Animals</topic><topic>Aorta</topic><topic>Atrophy</topic><topic>Biological Sciences</topic><topic>Congestive heart failure</topic><topic>Dependovirus - genetics</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - etiology</topic><topic>Diabetes Mellitus, Experimental - therapy</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Fibroblast growth factors</topic><topic>Fibroblast Growth Factors - physiology</topic><topic>Fibrosis</topic><topic>Gene therapy</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors - therapeutic use</topic><topic>Glucuronidase - blood</topic><topic>Glucuronidase - genetics</topic><topic>Glucuronidase - physiology</topic><topic>Growth factors</topic><topic>Heart failure</topic><topic>Heart Failure - therapy</topic><topic>Heart function</topic><topic>High fat diet</topic><topic>Insulin Resistance</topic><topic>Kidney Failure, Chronic - etiology</topic><topic>Kidney Failure, Chronic - pathology</topic><topic>Kidney Failure, Chronic - therapy</topic><topic>Kidney Medulla - pathology</topic><topic>Longevity</topic><topic>Longevity - genetics</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Muscles</topic><topic>Obesity</topic><topic>Obesity - etiology</topic><topic>Obesity - therapy</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Receptor, Transforming Growth Factor-beta Type II - genetics</topic><topic>Receptor, Transforming Growth Factor-beta Type II - physiology</topic><topic>Reduction</topic><topic>Renal failure</topic><topic>Smooth muscle</topic><topic>System effectiveness</topic><topic>Transforming Growth Factor beta1 - blood</topic><topic>Transforming Growth Factor beta1 - genetics</topic><topic>Transforming Growth Factor beta1 - physiology</topic><topic>Transforming growth factor-b</topic><topic>Ureteral Obstruction - complications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davidsohn, Noah</creatorcontrib><creatorcontrib>Pezzone, Matthew</creatorcontrib><creatorcontrib>Vernet, Andyna</creatorcontrib><creatorcontrib>Graveline, Amanda</creatorcontrib><creatorcontrib>Oliver, Daniel</creatorcontrib><creatorcontrib>Slomovic, Shimyn</creatorcontrib><creatorcontrib>Punthambaker, Sukanya</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Liao, Ronglih</creatorcontrib><creatorcontrib>Bonventre, Joseph V.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davidsohn, Noah</au><au>Pezzone, Matthew</au><au>Vernet, Andyna</au><au>Graveline, Amanda</au><au>Oliver, Daniel</au><au>Slomovic, Shimyn</au><au>Punthambaker, Sukanya</au><au>Sun, Xiaoming</au><au>Liao, Ronglih</au><au>Bonventre, Joseph V.</au><au>Church, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single combination gene therapy treats multiple age-related diseases</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-11-19</date><risdate>2019</risdate><volume>116</volume><issue>47</issue><spage>23505</spage><epage>23511</epage><pages>23505-23511</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Comorbidity is common as age increases, and currently prescribed treatments often ignore the interconnectedness of the involved age-related diseases. The presence of any one such disease usually increases the risk of having others, and new approaches will be more effective at increasing an individual’s health span by taking this systems-level view into account. In this study, we developed gene therapies based on 3 longevity associated genes (fibroblast growth factor 21 [FGF21], αKlotho, soluble form of mouse transforming growth factor-β receptor 2 [sTGFβR2]) delivered using adeno-associated viruses and explored their ability to mitigate 4 age-related diseases: obesity, type II diabetes, heart failure, and renal failure. Individually and combinatorially, we applied these therapies to disease-specific mouse models and found that this set of diverse pathologies could be effectively treated and in some cases, even reversed with a single dose. We observed a 58% increase in heart function in ascending aortic constriction ensuing heart failure, a 38% reduction in α-smooth muscle actin (αSMA) expression, and a 75% reduction in renal medullary atrophy in mice subjected to unilateral ureteral obstruction and a complete reversal of obesity and diabetes phenotypes in mice fed a constant high-fat diet. Crucially, we discovered that a single formulation combining 2 separate therapies into 1 was able to treat all 4 diseases. These results emphasize the promise of gene therapy for treating diverse age-related ailments and demonstrate the potential of combination gene therapy that may improve health span and longevity by addressing multiple diseases at once.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31685628</pmid><doi>10.1073/pnas.1910073116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3535-2076</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (47), p.23505-23511 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6876218 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Actin Age Age related diseases Aging Animal models Animals Aorta Atrophy Biological Sciences Congestive heart failure Dependovirus - genetics Diabetes Diabetes mellitus Diabetes Mellitus, Experimental - etiology Diabetes Mellitus, Experimental - therapy Diet, High-Fat - adverse effects Disease Models, Animal Fibroblast growth factors Fibroblast Growth Factors - physiology Fibrosis Gene therapy Genetic Therapy Genetic Vectors - therapeutic use Glucuronidase - blood Glucuronidase - genetics Glucuronidase - physiology Growth factors Heart failure Heart Failure - therapy Heart function High fat diet Insulin Resistance Kidney Failure, Chronic - etiology Kidney Failure, Chronic - pathology Kidney Failure, Chronic - therapy Kidney Medulla - pathology Longevity Longevity - genetics Male Mice, Inbred C57BL Muscles Obesity Obesity - etiology Obesity - therapy Phenotype Phenotypes Receptor, Transforming Growth Factor-beta Type II - genetics Receptor, Transforming Growth Factor-beta Type II - physiology Reduction Renal failure Smooth muscle System effectiveness Transforming Growth Factor beta1 - blood Transforming Growth Factor beta1 - genetics Transforming Growth Factor beta1 - physiology Transforming growth factor-b Ureteral Obstruction - complications |
title | A single combination gene therapy treats multiple age-related diseases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single%20combination%20gene%20therapy%20treats%20multiple%20age-related%20diseases&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Davidsohn,%20Noah&rft.date=2019-11-19&rft.volume=116&rft.issue=47&rft.spage=23505&rft.epage=23511&rft.pages=23505-23511&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1910073116&rft_dat=%3Cjstor_pubme%3E26861934%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316775386&rft_id=info:pmid/31685628&rft_jstor_id=26861934&rfr_iscdi=true |