Convolutional neural network for efficient estimation of regional brain strains
Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity prof...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-11, Vol.9 (1), p.17326-11, Article 17326 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 17326 |
container_title | Scientific reports |
container_volume | 9 |
creator | Wu, Shaoju Zhao, Wei Ghazi, Kianoosh Ji, Songbai |
description | Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations. Three strain measures are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing
R
2
of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all impact-strain response data available (N = 3069), the CNN achieves an
R
2
of 0.966 and RMSE of 0.013 in a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated head injury model, such as facilitating head impact sensors in concussion detection
via
a mobile device. In addition, it may transform current acceleration-based injury studies into focusing on regional brain strains. The trained CNN is publicly available along with associated code and examples at
https://github.com/Jilab-biomechanics/CNN-brain-strains
. They will be updated as needed in the future. |
doi_str_mv | 10.1038/s41598-019-53551-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6874599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317592680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-3075b418c4de75e824aff8c8e2a13d641650cbbdbf9a7ad3d6bcdfa62ee8ca2e3</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0Eogj6BxhQJBaWgJ-JsyChipeE1AVmy3GuS0oaFzsB8e9xSSmFAS_Xsr97fK4PQscEnxPM5EXgRBQyxaRIBROCpGQHHVDMRUoZpbtb-xEahzDHcQlacFLsoxEjuZAY0wM0nbj2zTV9V7tWN0kLvf8q3bvzL4l1PgFra1ND2yUQunqhV2TibOJhNvSUXtdtErpVCUdoz-omwHhdD9HTzfXj5C59mN7eT64eUsNz3qUM56LkRBpeQS5AUq6tlUYC1YRVGSeZwKYsq9IWOtdVPCpNZXVGAaTRFNghuhx0l325gMpEf9G4Wvro0H8op2v1-6atn9XMvalM5lwURRQ4Wwt499rH0dSiDgaaRrfg-qDo6o8Kmkkc0dM_6Nz1Po4-UJhlHItI0YEy3oXgwW7MEKxWkakhMhUjU1-RKRKbTrbH2LR8BxQBNgAhXrUz8D9v_yP7CR8bpC0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317036405</pqid></control><display><type>article</type><title>Convolutional neural network for efficient estimation of regional brain strains</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Shaoju ; Zhao, Wei ; Ghazi, Kianoosh ; Ji, Songbai</creator><creatorcontrib>Wu, Shaoju ; Zhao, Wei ; Ghazi, Kianoosh ; Ji, Songbai</creatorcontrib><description>Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations. Three strain measures are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing
R
2
of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all impact-strain response data available (N = 3069), the CNN achieves an
R
2
of 0.966 and RMSE of 0.013 in a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated head injury model, such as facilitating head impact sensors in concussion detection
via
a mobile device. In addition, it may transform current acceleration-based injury studies into focusing on regional brain strains. The trained CNN is publicly available along with associated code and examples at
https://github.com/Jilab-biomechanics/CNN-brain-strains
. They will be updated as needed in the future.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-53551-1</identifier><identifier>PMID: 31758002</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/166/985 ; Biomechanics ; Brain ; Brain Concussion - diagnosis ; Brain Concussion - pathology ; Brain injury ; Computer Simulation ; Concussion ; Corpus callosum ; Head ; Head injuries ; Humanities and Social Sciences ; Humans ; Models, Biological ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Science ; Science (multidisciplinary) ; Training</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.17326-11, Article 17326</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-3075b418c4de75e824aff8c8e2a13d641650cbbdbf9a7ad3d6bcdfa62ee8ca2e3</citedby><cites>FETCH-LOGICAL-c474t-3075b418c4de75e824aff8c8e2a13d641650cbbdbf9a7ad3d6bcdfa62ee8ca2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874599/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874599/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31758002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Shaoju</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Ghazi, Kianoosh</creatorcontrib><creatorcontrib>Ji, Songbai</creatorcontrib><title>Convolutional neural network for efficient estimation of regional brain strains</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations. Three strain measures are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing
R
2
of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all impact-strain response data available (N = 3069), the CNN achieves an
R
2
of 0.966 and RMSE of 0.013 in a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated head injury model, such as facilitating head impact sensors in concussion detection
via
a mobile device. In addition, it may transform current acceleration-based injury studies into focusing on regional brain strains. The trained CNN is publicly available along with associated code and examples at
https://github.com/Jilab-biomechanics/CNN-brain-strains
. They will be updated as needed in the future.</description><subject>639/166</subject><subject>639/166/985</subject><subject>Biomechanics</subject><subject>Brain</subject><subject>Brain Concussion - diagnosis</subject><subject>Brain Concussion - pathology</subject><subject>Brain injury</subject><subject>Computer Simulation</subject><subject>Concussion</subject><subject>Corpus callosum</subject><subject>Head</subject><subject>Head injuries</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Training</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kTtPwzAUhS0Eogj6BxhQJBaWgJ-JsyChipeE1AVmy3GuS0oaFzsB8e9xSSmFAS_Xsr97fK4PQscEnxPM5EXgRBQyxaRIBROCpGQHHVDMRUoZpbtb-xEahzDHcQlacFLsoxEjuZAY0wM0nbj2zTV9V7tWN0kLvf8q3bvzL4l1PgFra1ND2yUQunqhV2TibOJhNvSUXtdtErpVCUdoz-omwHhdD9HTzfXj5C59mN7eT64eUsNz3qUM56LkRBpeQS5AUq6tlUYC1YRVGSeZwKYsq9IWOtdVPCpNZXVGAaTRFNghuhx0l325gMpEf9G4Wvro0H8op2v1-6atn9XMvalM5lwURRQ4Wwt499rH0dSiDgaaRrfg-qDo6o8Kmkkc0dM_6Nz1Po4-UJhlHItI0YEy3oXgwW7MEKxWkakhMhUjU1-RKRKbTrbH2LR8BxQBNgAhXrUz8D9v_yP7CR8bpC0</recordid><startdate>20191122</startdate><enddate>20191122</enddate><creator>Wu, Shaoju</creator><creator>Zhao, Wei</creator><creator>Ghazi, Kianoosh</creator><creator>Ji, Songbai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191122</creationdate><title>Convolutional neural network for efficient estimation of regional brain strains</title><author>Wu, Shaoju ; Zhao, Wei ; Ghazi, Kianoosh ; Ji, Songbai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-3075b418c4de75e824aff8c8e2a13d641650cbbdbf9a7ad3d6bcdfa62ee8ca2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166</topic><topic>639/166/985</topic><topic>Biomechanics</topic><topic>Brain</topic><topic>Brain Concussion - diagnosis</topic><topic>Brain Concussion - pathology</topic><topic>Brain injury</topic><topic>Computer Simulation</topic><topic>Concussion</topic><topic>Corpus callosum</topic><topic>Head</topic><topic>Head injuries</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shaoju</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Ghazi, Kianoosh</creatorcontrib><creatorcontrib>Ji, Songbai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shaoju</au><au>Zhao, Wei</au><au>Ghazi, Kianoosh</au><au>Ji, Songbai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural network for efficient estimation of regional brain strains</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-11-22</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>17326</spage><epage>11</epage><pages>17326-11</pages><artnum>17326</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations. Three strain measures are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing
R
2
of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all impact-strain response data available (N = 3069), the CNN achieves an
R
2
of 0.966 and RMSE of 0.013 in a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated head injury model, such as facilitating head impact sensors in concussion detection
via
a mobile device. In addition, it may transform current acceleration-based injury studies into focusing on regional brain strains. The trained CNN is publicly available along with associated code and examples at
https://github.com/Jilab-biomechanics/CNN-brain-strains
. They will be updated as needed in the future.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31758002</pmid><doi>10.1038/s41598-019-53551-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-11, Vol.9 (1), p.17326-11, Article 17326 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6874599 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/166 639/166/985 Biomechanics Brain Brain Concussion - diagnosis Brain Concussion - pathology Brain injury Computer Simulation Concussion Corpus callosum Head Head injuries Humanities and Social Sciences Humans Models, Biological multidisciplinary Neural networks Neural Networks, Computer Science Science (multidisciplinary) Training |
title | Convolutional neural network for efficient estimation of regional brain strains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20network%20for%20efficient%20estimation%20of%20regional%20brain%20strains&rft.jtitle=Scientific%20reports&rft.au=Wu,%20Shaoju&rft.date=2019-11-22&rft.volume=9&rft.issue=1&rft.spage=17326&rft.epage=11&rft.pages=17326-11&rft.artnum=17326&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-53551-1&rft_dat=%3Cproquest_pubme%3E2317592680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317036405&rft_id=info:pmid/31758002&rfr_iscdi=true |