Convolutional neural network for efficient estimation of regional brain strains

Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity prof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-11, Vol.9 (1), p.17326-11, Article 17326
Hauptverfasser: Wu, Shaoju, Zhao, Wei, Ghazi, Kianoosh, Ji, Songbai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 17326
container_title Scientific reports
container_volume 9
creator Wu, Shaoju
Zhao, Wei
Ghazi, Kianoosh
Ji, Songbai
description Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations. Three strain measures are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing R 2 of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all impact-strain response data available (N = 3069), the CNN achieves an R 2 of 0.966 and RMSE of 0.013 in a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated head injury model, such as facilitating head impact sensors in concussion detection via a mobile device. In addition, it may transform current acceleration-based injury studies into focusing on regional brain strains. The trained CNN is publicly available along with associated code and examples at https://github.com/Jilab-biomechanics/CNN-brain-strains . They will be updated as needed in the future.
doi_str_mv 10.1038/s41598-019-53551-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6874599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317592680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-3075b418c4de75e824aff8c8e2a13d641650cbbdbf9a7ad3d6bcdfa62ee8ca2e3</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0Eogj6BxhQJBaWgJ-JsyChipeE1AVmy3GuS0oaFzsB8e9xSSmFAS_Xsr97fK4PQscEnxPM5EXgRBQyxaRIBROCpGQHHVDMRUoZpbtb-xEahzDHcQlacFLsoxEjuZAY0wM0nbj2zTV9V7tWN0kLvf8q3bvzL4l1PgFra1ND2yUQunqhV2TibOJhNvSUXtdtErpVCUdoz-omwHhdD9HTzfXj5C59mN7eT64eUsNz3qUM56LkRBpeQS5AUq6tlUYC1YRVGSeZwKYsq9IWOtdVPCpNZXVGAaTRFNghuhx0l325gMpEf9G4Wvro0H8op2v1-6atn9XMvalM5lwURRQ4Wwt499rH0dSiDgaaRrfg-qDo6o8Kmkkc0dM_6Nz1Po4-UJhlHItI0YEy3oXgwW7MEKxWkakhMhUjU1-RKRKbTrbH2LR8BxQBNgAhXrUz8D9v_yP7CR8bpC0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317036405</pqid></control><display><type>article</type><title>Convolutional neural network for efficient estimation of regional brain strains</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Shaoju ; Zhao, Wei ; Ghazi, Kianoosh ; Ji, Songbai</creator><creatorcontrib>Wu, Shaoju ; Zhao, Wei ; Ghazi, Kianoosh ; Ji, Songbai</creatorcontrib><description>Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations. Three strain measures are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing R 2 of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all impact-strain response data available (N = 3069), the CNN achieves an R 2 of 0.966 and RMSE of 0.013 in a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated head injury model, such as facilitating head impact sensors in concussion detection via a mobile device. In addition, it may transform current acceleration-based injury studies into focusing on regional brain strains. The trained CNN is publicly available along with associated code and examples at https://github.com/Jilab-biomechanics/CNN-brain-strains . They will be updated as needed in the future.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-53551-1</identifier><identifier>PMID: 31758002</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/166/985 ; Biomechanics ; Brain ; Brain Concussion - diagnosis ; Brain Concussion - pathology ; Brain injury ; Computer Simulation ; Concussion ; Corpus callosum ; Head ; Head injuries ; Humanities and Social Sciences ; Humans ; Models, Biological ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Science ; Science (multidisciplinary) ; Training</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.17326-11, Article 17326</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-3075b418c4de75e824aff8c8e2a13d641650cbbdbf9a7ad3d6bcdfa62ee8ca2e3</citedby><cites>FETCH-LOGICAL-c474t-3075b418c4de75e824aff8c8e2a13d641650cbbdbf9a7ad3d6bcdfa62ee8ca2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874599/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874599/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31758002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Shaoju</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Ghazi, Kianoosh</creatorcontrib><creatorcontrib>Ji, Songbai</creatorcontrib><title>Convolutional neural network for efficient estimation of regional brain strains</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations. Three strain measures are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing R 2 of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all impact-strain response data available (N = 3069), the CNN achieves an R 2 of 0.966 and RMSE of 0.013 in a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated head injury model, such as facilitating head impact sensors in concussion detection via a mobile device. In addition, it may transform current acceleration-based injury studies into focusing on regional brain strains. The trained CNN is publicly available along with associated code and examples at https://github.com/Jilab-biomechanics/CNN-brain-strains . They will be updated as needed in the future.</description><subject>639/166</subject><subject>639/166/985</subject><subject>Biomechanics</subject><subject>Brain</subject><subject>Brain Concussion - diagnosis</subject><subject>Brain Concussion - pathology</subject><subject>Brain injury</subject><subject>Computer Simulation</subject><subject>Concussion</subject><subject>Corpus callosum</subject><subject>Head</subject><subject>Head injuries</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Training</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kTtPwzAUhS0Eogj6BxhQJBaWgJ-JsyChipeE1AVmy3GuS0oaFzsB8e9xSSmFAS_Xsr97fK4PQscEnxPM5EXgRBQyxaRIBROCpGQHHVDMRUoZpbtb-xEahzDHcQlacFLsoxEjuZAY0wM0nbj2zTV9V7tWN0kLvf8q3bvzL4l1PgFra1ND2yUQunqhV2TibOJhNvSUXtdtErpVCUdoz-omwHhdD9HTzfXj5C59mN7eT64eUsNz3qUM56LkRBpeQS5AUq6tlUYC1YRVGSeZwKYsq9IWOtdVPCpNZXVGAaTRFNghuhx0l325gMpEf9G4Wvro0H8op2v1-6atn9XMvalM5lwURRQ4Wwt499rH0dSiDgaaRrfg-qDo6o8Kmkkc0dM_6Nz1Po4-UJhlHItI0YEy3oXgwW7MEKxWkakhMhUjU1-RKRKbTrbH2LR8BxQBNgAhXrUz8D9v_yP7CR8bpC0</recordid><startdate>20191122</startdate><enddate>20191122</enddate><creator>Wu, Shaoju</creator><creator>Zhao, Wei</creator><creator>Ghazi, Kianoosh</creator><creator>Ji, Songbai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191122</creationdate><title>Convolutional neural network for efficient estimation of regional brain strains</title><author>Wu, Shaoju ; Zhao, Wei ; Ghazi, Kianoosh ; Ji, Songbai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-3075b418c4de75e824aff8c8e2a13d641650cbbdbf9a7ad3d6bcdfa62ee8ca2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166</topic><topic>639/166/985</topic><topic>Biomechanics</topic><topic>Brain</topic><topic>Brain Concussion - diagnosis</topic><topic>Brain Concussion - pathology</topic><topic>Brain injury</topic><topic>Computer Simulation</topic><topic>Concussion</topic><topic>Corpus callosum</topic><topic>Head</topic><topic>Head injuries</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shaoju</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Ghazi, Kianoosh</creatorcontrib><creatorcontrib>Ji, Songbai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shaoju</au><au>Zhao, Wei</au><au>Ghazi, Kianoosh</au><au>Ji, Songbai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural network for efficient estimation of regional brain strains</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-11-22</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>17326</spage><epage>11</epage><pages>17326-11</pages><artnum>17326</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations. Three strain measures are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing R 2 of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all impact-strain response data available (N = 3069), the CNN achieves an R 2 of 0.966 and RMSE of 0.013 in a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated head injury model, such as facilitating head impact sensors in concussion detection via a mobile device. In addition, it may transform current acceleration-based injury studies into focusing on regional brain strains. The trained CNN is publicly available along with associated code and examples at https://github.com/Jilab-biomechanics/CNN-brain-strains . They will be updated as needed in the future.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31758002</pmid><doi>10.1038/s41598-019-53551-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-11, Vol.9 (1), p.17326-11, Article 17326
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6874599
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/166
639/166/985
Biomechanics
Brain
Brain Concussion - diagnosis
Brain Concussion - pathology
Brain injury
Computer Simulation
Concussion
Corpus callosum
Head
Head injuries
Humanities and Social Sciences
Humans
Models, Biological
multidisciplinary
Neural networks
Neural Networks, Computer
Science
Science (multidisciplinary)
Training
title Convolutional neural network for efficient estimation of regional brain strains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20network%20for%20efficient%20estimation%20of%20regional%20brain%20strains&rft.jtitle=Scientific%20reports&rft.au=Wu,%20Shaoju&rft.date=2019-11-22&rft.volume=9&rft.issue=1&rft.spage=17326&rft.epage=11&rft.pages=17326-11&rft.artnum=17326&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-53551-1&rft_dat=%3Cproquest_pubme%3E2317592680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317036405&rft_id=info:pmid/31758002&rfr_iscdi=true