Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices

Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-11, Vol.9 (1), p.17367-10, Article 17367
Hauptverfasser: Vahl, Alexander, Carstens, Niko, Strunskus, Thomas, Faupel, Franz, Hassanien, Abdou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 17367
container_title Scientific reports
container_volume 9
creator Vahl, Alexander
Carstens, Niko
Strunskus, Thomas
Faupel, Franz
Hassanien, Abdou
description Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristive properties of individual noble metal alloy nanoparticles that are sparsely encapsulated in a thin SiO 2 dielectric matrix. The measurement of current-voltage hysteresis loops at the level of individual nanoparticles, enabled by the nanoscopic contact area of the C-AFM tip, indicates reliable memristive switching for several hours of continuous operations. Alongside the electrical characterization on the nanoscale, the method of C-AFM offers the potential for in situ monitoring of long term operation induced morphological alterations and device failure, which is demonstrated at the example of nanoparticle-based devices with additional Cr wetting layer. The application of alloy nanoparticles as reservoir for mobile silver species effectively limits the formation of stable metallic filaments and results in reproducible diffusive switching characteristics. Notably, similar behaviour is encountered on macroscopic nanocomposite devices, which incorporate multiple stacks of nanoparticles and offer a high design versatility to tune switching properties and engineer scalable memristive devices with diffusive switching characteristics. No additional forming step is required for the operation of the presented alloy nanoparticle based memristive devices, which renders them very attractive for applications.
doi_str_mv 10.1038/s41598-019-53720-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6874579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317585015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-718519e3b6cbf9fe557c9db88be0e5aad15a6a07d48960eaa4a81be87819b7fa3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotXSP8ABReLCoSn-jO0LEmr5qFTgUDhbE2ey6yqJFzvZin9PdtOWwgFfPNL7zDsev4S8ZPSMUWHeZsmUNSVltlRCc1ryJ-SYU6lKLjh_-qg-Iic539D5KG4ls8_JkWBaGcrZMZkuQttOOeyw-IJ9Cnncl9e3YfSbMKyLOBTjBouvMMTsocPTok2xLy6HJuxCM0F3kLaQxuA7zMUYbyE1ubieYai7pdPHfhtzGLG4wF3wmF-QZy10GU_u7hX58fHD9_PP5dW3T5fn769KL7UcS82MYhZFXfm6tS0qpb1tamNqpKgAGqagAqobaWxFEUCCYTUabZitdQtiRd4tvtup7rHxOIwJOrdNoYf0y0UI7m9lCBu3jjtXGS2VtrPBmzuDFH9OmEfXh-yx62DAOGXHDz-pKFMz-vof9CZOaZjXO1BUVFLsDflC-RRzTtg-PIZRtw_WLcG6OVh3CHbuXpFXj9d4aLmPcQbEAuRZGtaY_sz-j-1v9CexTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317036439</pqid></control><display><type>article</type><title>Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vahl, Alexander ; Carstens, Niko ; Strunskus, Thomas ; Faupel, Franz ; Hassanien, Abdou</creator><creatorcontrib>Vahl, Alexander ; Carstens, Niko ; Strunskus, Thomas ; Faupel, Franz ; Hassanien, Abdou</creatorcontrib><description>Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristive properties of individual noble metal alloy nanoparticles that are sparsely encapsulated in a thin SiO 2 dielectric matrix. The measurement of current-voltage hysteresis loops at the level of individual nanoparticles, enabled by the nanoscopic contact area of the C-AFM tip, indicates reliable memristive switching for several hours of continuous operations. Alongside the electrical characterization on the nanoscale, the method of C-AFM offers the potential for in situ monitoring of long term operation induced morphological alterations and device failure, which is demonstrated at the example of nanoparticle-based devices with additional Cr wetting layer. The application of alloy nanoparticles as reservoir for mobile silver species effectively limits the formation of stable metallic filaments and results in reproducible diffusive switching characteristics. Notably, similar behaviour is encountered on macroscopic nanocomposite devices, which incorporate multiple stacks of nanoparticles and offer a high design versatility to tune switching properties and engineer scalable memristive devices with diffusive switching characteristics. No additional forming step is required for the operation of the presented alloy nanoparticle based memristive devices, which renders them very attractive for applications.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-53720-2</identifier><identifier>PMID: 31758021</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/357/354 ; 639/301/357/995 ; Atomic force microscopy ; Chromium ; Filaments ; Humanities and Social Sciences ; multidisciplinary ; Nanocomposites ; Nanoparticles ; Science ; Science (multidisciplinary) ; Silicon dioxide ; Silver</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.17367-10, Article 17367</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-718519e3b6cbf9fe557c9db88be0e5aad15a6a07d48960eaa4a81be87819b7fa3</citedby><cites>FETCH-LOGICAL-c474t-718519e3b6cbf9fe557c9db88be0e5aad15a6a07d48960eaa4a81be87819b7fa3</cites><orcidid>0000-0002-7311-272X ; 0000-0003-3931-5635 ; 0000-0003-3367-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874579/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874579/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31758021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vahl, Alexander</creatorcontrib><creatorcontrib>Carstens, Niko</creatorcontrib><creatorcontrib>Strunskus, Thomas</creatorcontrib><creatorcontrib>Faupel, Franz</creatorcontrib><creatorcontrib>Hassanien, Abdou</creatorcontrib><title>Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristive properties of individual noble metal alloy nanoparticles that are sparsely encapsulated in a thin SiO 2 dielectric matrix. The measurement of current-voltage hysteresis loops at the level of individual nanoparticles, enabled by the nanoscopic contact area of the C-AFM tip, indicates reliable memristive switching for several hours of continuous operations. Alongside the electrical characterization on the nanoscale, the method of C-AFM offers the potential for in situ monitoring of long term operation induced morphological alterations and device failure, which is demonstrated at the example of nanoparticle-based devices with additional Cr wetting layer. The application of alloy nanoparticles as reservoir for mobile silver species effectively limits the formation of stable metallic filaments and results in reproducible diffusive switching characteristics. Notably, similar behaviour is encountered on macroscopic nanocomposite devices, which incorporate multiple stacks of nanoparticles and offer a high design versatility to tune switching properties and engineer scalable memristive devices with diffusive switching characteristics. No additional forming step is required for the operation of the presented alloy nanoparticle based memristive devices, which renders them very attractive for applications.</description><subject>639/301/1005/1007</subject><subject>639/301/357/354</subject><subject>639/301/357/995</subject><subject>Atomic force microscopy</subject><subject>Chromium</subject><subject>Filaments</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon dioxide</subject><subject>Silver</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi0EotXSP8ABReLCoSn-jO0LEmr5qFTgUDhbE2ey6yqJFzvZin9PdtOWwgFfPNL7zDsev4S8ZPSMUWHeZsmUNSVltlRCc1ryJ-SYU6lKLjh_-qg-Iic539D5KG4ls8_JkWBaGcrZMZkuQttOOeyw-IJ9Cnncl9e3YfSbMKyLOBTjBouvMMTsocPTok2xLy6HJuxCM0F3kLaQxuA7zMUYbyE1ubieYai7pdPHfhtzGLG4wF3wmF-QZy10GU_u7hX58fHD9_PP5dW3T5fn769KL7UcS82MYhZFXfm6tS0qpb1tamNqpKgAGqagAqobaWxFEUCCYTUabZitdQtiRd4tvtup7rHxOIwJOrdNoYf0y0UI7m9lCBu3jjtXGS2VtrPBmzuDFH9OmEfXh-yx62DAOGXHDz-pKFMz-vof9CZOaZjXO1BUVFLsDflC-RRzTtg-PIZRtw_WLcG6OVh3CHbuXpFXj9d4aLmPcQbEAuRZGtaY_sz-j-1v9CexTA</recordid><startdate>20191122</startdate><enddate>20191122</enddate><creator>Vahl, Alexander</creator><creator>Carstens, Niko</creator><creator>Strunskus, Thomas</creator><creator>Faupel, Franz</creator><creator>Hassanien, Abdou</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7311-272X</orcidid><orcidid>https://orcid.org/0000-0003-3931-5635</orcidid><orcidid>https://orcid.org/0000-0003-3367-1655</orcidid></search><sort><creationdate>20191122</creationdate><title>Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices</title><author>Vahl, Alexander ; Carstens, Niko ; Strunskus, Thomas ; Faupel, Franz ; Hassanien, Abdou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-718519e3b6cbf9fe557c9db88be0e5aad15a6a07d48960eaa4a81be87819b7fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1005/1007</topic><topic>639/301/357/354</topic><topic>639/301/357/995</topic><topic>Atomic force microscopy</topic><topic>Chromium</topic><topic>Filaments</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon dioxide</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vahl, Alexander</creatorcontrib><creatorcontrib>Carstens, Niko</creatorcontrib><creatorcontrib>Strunskus, Thomas</creatorcontrib><creatorcontrib>Faupel, Franz</creatorcontrib><creatorcontrib>Hassanien, Abdou</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vahl, Alexander</au><au>Carstens, Niko</au><au>Strunskus, Thomas</au><au>Faupel, Franz</au><au>Hassanien, Abdou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-11-22</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>17367</spage><epage>10</epage><pages>17367-10</pages><artnum>17367</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristive properties of individual noble metal alloy nanoparticles that are sparsely encapsulated in a thin SiO 2 dielectric matrix. The measurement of current-voltage hysteresis loops at the level of individual nanoparticles, enabled by the nanoscopic contact area of the C-AFM tip, indicates reliable memristive switching for several hours of continuous operations. Alongside the electrical characterization on the nanoscale, the method of C-AFM offers the potential for in situ monitoring of long term operation induced morphological alterations and device failure, which is demonstrated at the example of nanoparticle-based devices with additional Cr wetting layer. The application of alloy nanoparticles as reservoir for mobile silver species effectively limits the formation of stable metallic filaments and results in reproducible diffusive switching characteristics. Notably, similar behaviour is encountered on macroscopic nanocomposite devices, which incorporate multiple stacks of nanoparticles and offer a high design versatility to tune switching properties and engineer scalable memristive devices with diffusive switching characteristics. No additional forming step is required for the operation of the presented alloy nanoparticle based memristive devices, which renders them very attractive for applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31758021</pmid><doi>10.1038/s41598-019-53720-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7311-272X</orcidid><orcidid>https://orcid.org/0000-0003-3931-5635</orcidid><orcidid>https://orcid.org/0000-0003-3367-1655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-11, Vol.9 (1), p.17367-10, Article 17367
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6874579
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/301/1005/1007
639/301/357/354
639/301/357/995
Atomic force microscopy
Chromium
Filaments
Humanities and Social Sciences
multidisciplinary
Nanocomposites
Nanoparticles
Science
Science (multidisciplinary)
Silicon dioxide
Silver
title Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusive%20Memristive%20Switching%20on%20the%20Nanoscale,%20from%20Individual%20Nanoparticles%20towards%20Scalable%20Nanocomposite%20Devices&rft.jtitle=Scientific%20reports&rft.au=Vahl,%20Alexander&rft.date=2019-11-22&rft.volume=9&rft.issue=1&rft.spage=17367&rft.epage=10&rft.pages=17367-10&rft.artnum=17367&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-53720-2&rft_dat=%3Cproquest_pubme%3E2317585015%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317036439&rft_id=info:pmid/31758021&rfr_iscdi=true