Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices
Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristiv...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-11, Vol.9 (1), p.17367-10, Article 17367 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 17367 |
container_title | Scientific reports |
container_volume | 9 |
creator | Vahl, Alexander Carstens, Niko Strunskus, Thomas Faupel, Franz Hassanien, Abdou |
description | Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristive properties of individual noble metal alloy nanoparticles that are sparsely encapsulated in a thin SiO
2
dielectric matrix. The measurement of current-voltage hysteresis loops at the level of individual nanoparticles, enabled by the nanoscopic contact area of the C-AFM tip, indicates reliable memristive switching for several hours of continuous operations. Alongside the electrical characterization on the nanoscale, the method of C-AFM offers the potential for
in situ
monitoring of long term operation induced morphological alterations and device failure, which is demonstrated at the example of nanoparticle-based devices with additional Cr wetting layer. The application of alloy nanoparticles as reservoir for mobile silver species effectively limits the formation of stable metallic filaments and results in reproducible diffusive switching characteristics. Notably, similar behaviour is encountered on macroscopic nanocomposite devices, which incorporate multiple stacks of nanoparticles and offer a high design versatility to tune switching properties and engineer scalable memristive devices with diffusive switching characteristics. No additional forming step is required for the operation of the presented alloy nanoparticle based memristive devices, which renders them very attractive for applications. |
doi_str_mv | 10.1038/s41598-019-53720-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6874579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317585015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-718519e3b6cbf9fe557c9db88be0e5aad15a6a07d48960eaa4a81be87819b7fa3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotXSP8ABReLCoSn-jO0LEmr5qFTgUDhbE2ey6yqJFzvZin9PdtOWwgFfPNL7zDsev4S8ZPSMUWHeZsmUNSVltlRCc1ryJ-SYU6lKLjh_-qg-Iic539D5KG4ls8_JkWBaGcrZMZkuQttOOeyw-IJ9Cnncl9e3YfSbMKyLOBTjBouvMMTsocPTok2xLy6HJuxCM0F3kLaQxuA7zMUYbyE1ubieYai7pdPHfhtzGLG4wF3wmF-QZy10GU_u7hX58fHD9_PP5dW3T5fn769KL7UcS82MYhZFXfm6tS0qpb1tamNqpKgAGqagAqobaWxFEUCCYTUabZitdQtiRd4tvtup7rHxOIwJOrdNoYf0y0UI7m9lCBu3jjtXGS2VtrPBmzuDFH9OmEfXh-yx62DAOGXHDz-pKFMz-vof9CZOaZjXO1BUVFLsDflC-RRzTtg-PIZRtw_WLcG6OVh3CHbuXpFXj9d4aLmPcQbEAuRZGtaY_sz-j-1v9CexTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317036439</pqid></control><display><type>article</type><title>Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vahl, Alexander ; Carstens, Niko ; Strunskus, Thomas ; Faupel, Franz ; Hassanien, Abdou</creator><creatorcontrib>Vahl, Alexander ; Carstens, Niko ; Strunskus, Thomas ; Faupel, Franz ; Hassanien, Abdou</creatorcontrib><description>Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristive properties of individual noble metal alloy nanoparticles that are sparsely encapsulated in a thin SiO
2
dielectric matrix. The measurement of current-voltage hysteresis loops at the level of individual nanoparticles, enabled by the nanoscopic contact area of the C-AFM tip, indicates reliable memristive switching for several hours of continuous operations. Alongside the electrical characterization on the nanoscale, the method of C-AFM offers the potential for
in situ
monitoring of long term operation induced morphological alterations and device failure, which is demonstrated at the example of nanoparticle-based devices with additional Cr wetting layer. The application of alloy nanoparticles as reservoir for mobile silver species effectively limits the formation of stable metallic filaments and results in reproducible diffusive switching characteristics. Notably, similar behaviour is encountered on macroscopic nanocomposite devices, which incorporate multiple stacks of nanoparticles and offer a high design versatility to tune switching properties and engineer scalable memristive devices with diffusive switching characteristics. No additional forming step is required for the operation of the presented alloy nanoparticle based memristive devices, which renders them very attractive for applications.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-53720-2</identifier><identifier>PMID: 31758021</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/357/354 ; 639/301/357/995 ; Atomic force microscopy ; Chromium ; Filaments ; Humanities and Social Sciences ; multidisciplinary ; Nanocomposites ; Nanoparticles ; Science ; Science (multidisciplinary) ; Silicon dioxide ; Silver</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.17367-10, Article 17367</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-718519e3b6cbf9fe557c9db88be0e5aad15a6a07d48960eaa4a81be87819b7fa3</citedby><cites>FETCH-LOGICAL-c474t-718519e3b6cbf9fe557c9db88be0e5aad15a6a07d48960eaa4a81be87819b7fa3</cites><orcidid>0000-0002-7311-272X ; 0000-0003-3931-5635 ; 0000-0003-3367-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874579/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874579/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31758021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vahl, Alexander</creatorcontrib><creatorcontrib>Carstens, Niko</creatorcontrib><creatorcontrib>Strunskus, Thomas</creatorcontrib><creatorcontrib>Faupel, Franz</creatorcontrib><creatorcontrib>Hassanien, Abdou</creatorcontrib><title>Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristive properties of individual noble metal alloy nanoparticles that are sparsely encapsulated in a thin SiO
2
dielectric matrix. The measurement of current-voltage hysteresis loops at the level of individual nanoparticles, enabled by the nanoscopic contact area of the C-AFM tip, indicates reliable memristive switching for several hours of continuous operations. Alongside the electrical characterization on the nanoscale, the method of C-AFM offers the potential for
in situ
monitoring of long term operation induced morphological alterations and device failure, which is demonstrated at the example of nanoparticle-based devices with additional Cr wetting layer. The application of alloy nanoparticles as reservoir for mobile silver species effectively limits the formation of stable metallic filaments and results in reproducible diffusive switching characteristics. Notably, similar behaviour is encountered on macroscopic nanocomposite devices, which incorporate multiple stacks of nanoparticles and offer a high design versatility to tune switching properties and engineer scalable memristive devices with diffusive switching characteristics. No additional forming step is required for the operation of the presented alloy nanoparticle based memristive devices, which renders them very attractive for applications.</description><subject>639/301/1005/1007</subject><subject>639/301/357/354</subject><subject>639/301/357/995</subject><subject>Atomic force microscopy</subject><subject>Chromium</subject><subject>Filaments</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon dioxide</subject><subject>Silver</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi0EotXSP8ABReLCoSn-jO0LEmr5qFTgUDhbE2ey6yqJFzvZin9PdtOWwgFfPNL7zDsev4S8ZPSMUWHeZsmUNSVltlRCc1ryJ-SYU6lKLjh_-qg-Iic539D5KG4ls8_JkWBaGcrZMZkuQttOOeyw-IJ9Cnncl9e3YfSbMKyLOBTjBouvMMTsocPTok2xLy6HJuxCM0F3kLaQxuA7zMUYbyE1ubieYai7pdPHfhtzGLG4wF3wmF-QZy10GU_u7hX58fHD9_PP5dW3T5fn769KL7UcS82MYhZFXfm6tS0qpb1tamNqpKgAGqagAqobaWxFEUCCYTUabZitdQtiRd4tvtup7rHxOIwJOrdNoYf0y0UI7m9lCBu3jjtXGS2VtrPBmzuDFH9OmEfXh-yx62DAOGXHDz-pKFMz-vof9CZOaZjXO1BUVFLsDflC-RRzTtg-PIZRtw_WLcG6OVh3CHbuXpFXj9d4aLmPcQbEAuRZGtaY_sz-j-1v9CexTA</recordid><startdate>20191122</startdate><enddate>20191122</enddate><creator>Vahl, Alexander</creator><creator>Carstens, Niko</creator><creator>Strunskus, Thomas</creator><creator>Faupel, Franz</creator><creator>Hassanien, Abdou</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7311-272X</orcidid><orcidid>https://orcid.org/0000-0003-3931-5635</orcidid><orcidid>https://orcid.org/0000-0003-3367-1655</orcidid></search><sort><creationdate>20191122</creationdate><title>Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices</title><author>Vahl, Alexander ; Carstens, Niko ; Strunskus, Thomas ; Faupel, Franz ; Hassanien, Abdou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-718519e3b6cbf9fe557c9db88be0e5aad15a6a07d48960eaa4a81be87819b7fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1005/1007</topic><topic>639/301/357/354</topic><topic>639/301/357/995</topic><topic>Atomic force microscopy</topic><topic>Chromium</topic><topic>Filaments</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon dioxide</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vahl, Alexander</creatorcontrib><creatorcontrib>Carstens, Niko</creatorcontrib><creatorcontrib>Strunskus, Thomas</creatorcontrib><creatorcontrib>Faupel, Franz</creatorcontrib><creatorcontrib>Hassanien, Abdou</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vahl, Alexander</au><au>Carstens, Niko</au><au>Strunskus, Thomas</au><au>Faupel, Franz</au><au>Hassanien, Abdou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-11-22</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>17367</spage><epage>10</epage><pages>17367-10</pages><artnum>17367</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Nanoscale memristive phenomena are of great interest not only to miniaturize devices and improve their performance but also to understand the details of the underlying mechanism. Herein, we utilize conductive atomic force microscopy (C-AFM) as a non-invasive method to examine the nanoscale memristive properties of individual noble metal alloy nanoparticles that are sparsely encapsulated in a thin SiO
2
dielectric matrix. The measurement of current-voltage hysteresis loops at the level of individual nanoparticles, enabled by the nanoscopic contact area of the C-AFM tip, indicates reliable memristive switching for several hours of continuous operations. Alongside the electrical characterization on the nanoscale, the method of C-AFM offers the potential for
in situ
monitoring of long term operation induced morphological alterations and device failure, which is demonstrated at the example of nanoparticle-based devices with additional Cr wetting layer. The application of alloy nanoparticles as reservoir for mobile silver species effectively limits the formation of stable metallic filaments and results in reproducible diffusive switching characteristics. Notably, similar behaviour is encountered on macroscopic nanocomposite devices, which incorporate multiple stacks of nanoparticles and offer a high design versatility to tune switching properties and engineer scalable memristive devices with diffusive switching characteristics. No additional forming step is required for the operation of the presented alloy nanoparticle based memristive devices, which renders them very attractive for applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31758021</pmid><doi>10.1038/s41598-019-53720-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7311-272X</orcidid><orcidid>https://orcid.org/0000-0003-3931-5635</orcidid><orcidid>https://orcid.org/0000-0003-3367-1655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-11, Vol.9 (1), p.17367-10, Article 17367 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6874579 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/301/1005/1007 639/301/357/354 639/301/357/995 Atomic force microscopy Chromium Filaments Humanities and Social Sciences multidisciplinary Nanocomposites Nanoparticles Science Science (multidisciplinary) Silicon dioxide Silver |
title | Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusive%20Memristive%20Switching%20on%20the%20Nanoscale,%20from%20Individual%20Nanoparticles%20towards%20Scalable%20Nanocomposite%20Devices&rft.jtitle=Scientific%20reports&rft.au=Vahl,%20Alexander&rft.date=2019-11-22&rft.volume=9&rft.issue=1&rft.spage=17367&rft.epage=10&rft.pages=17367-10&rft.artnum=17367&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-53720-2&rft_dat=%3Cproquest_pubme%3E2317585015%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317036439&rft_id=info:pmid/31758021&rfr_iscdi=true |