Detecting changes in nonisotropic images

If the noise component of image data is nonisotropic, i.e., if it has nonconstant smoothness or effective point spread function, then theoretical results for the P value of local maxima and the size of suprathreshold clusters of a statistical parametric map (SPM) based on random field theory are not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 1999, Vol.8 (2-3), p.98-101
Hauptverfasser: Worsley, K.J., Andermann, M., Koulis, T., MacDonald, D., Evans, A.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If the noise component of image data is nonisotropic, i.e., if it has nonconstant smoothness or effective point spread function, then theoretical results for the P value of local maxima and the size of suprathreshold clusters of a statistical parametric map (SPM) based on random field theory are not valid. This assumption is reasonable for PET or smoothed fMRI data, but not if these data are projected onto an unfolded, inflated, or flattened 2D cortical surface. Anatomical data such as structure masks, surface displacements, and deformation vectors are also highly nonisotropic. The solution offered here is to suppose that the image can be warped or flattened (in a statistical sense) into a space where the data are isotropic. The subsequent corrected P values do not depend on finding this warping; it is sufficient only to know that such a warping exists. Hum. Brain Mapping 8:98–101, 1999. © 1999 Wiley‐Liss, Inc.
ISSN:1065-9471
1097-0193
DOI:10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F