Circadian clock genes and the transcriptional architecture of the clock mechanism
The mammalian circadian clock has evolved as an adaptation to the 24-h light/darkness cycle on earth. Maintaining cellular activities in synchrony with the activities of the organism (such as eating and sleeping) helps different tissue and organ systems coordinate and optimize their performance. The...
Gespeichert in:
Veröffentlicht in: | Journal of molecular endocrinology 2019-11, Vol.63 (4), p.R93-R102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | R102 |
---|---|
container_issue | 4 |
container_start_page | R93 |
container_title | Journal of molecular endocrinology |
container_volume | 63 |
creator | Cox, Kimberly H Takahashi, Joseph S |
description | The mammalian circadian clock has evolved as an adaptation to the 24-h light/darkness cycle on earth. Maintaining cellular activities in synchrony with the activities of the organism (such as eating and sleeping) helps different tissue and organ systems coordinate and optimize their performance. The full extent of the mechanisms by which cells maintain the clock are still under investigation, but involve a core set of clock genes that regulate large networks of gene transcription both by direct transcriptional activation/repression as well as the recruitment of proteins that modify chromatin states more broadly. |
doi_str_mv | 10.1530/JME-19-0153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6872945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314757224</sourcerecordid><originalsourceid>FETCH-LOGICAL-b493t-cf227b45651e8ef602f52cca3c36c5e3bb8138f84bb501f7b3818d16c7229f8e3</originalsourceid><addsrcrecordid>eNp9kc9rFTEQx4Mo9rV68i4LXgTZmp-b3YtQHrVaKiLoOSTzJn2pu8kz2S3435vnq8V68BSGfOY735kvIS8YPWVK0LeXn85bNrS0Fo_Iikk9tF3PxGOyooPiraKSHZHjUm5oRZiWT8mRYEppzbsV-bIOGewm2NjAmOB7c40RS2Pjppm32MzZxgI57OaQoh0bm2EbZoR5ydgk_5s59E0IWxtDmZ6RJ96OBZ_fvSfk2_vzr-sP7dXni4_rs6vWyUHMLXjOtZOqUwx79B3lXnEAK0B0oFA4V3fofS-dU5R57UTP-g3rQHM--B7FCXl30N0tbsINYKxmR7PLYbL5p0k2mIc_MWzNdbo1Xa_5IFUVeH0nkNOPBctsplAAx9FGTEsxdc7AZMf1Hn31D3qTllwPUilRL66qKVmpNwcKciolo783w6jZR2VqVIYNZh9VpV_-7f-e_ZNNBdgBcCEVCHWL4APY_4r-AhC3n3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314757224</pqid></control><display><type>article</type><title>Circadian clock genes and the transcriptional architecture of the clock mechanism</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Society for Endocrinology Journals</source><creator>Cox, Kimberly H ; Takahashi, Joseph S</creator><creatorcontrib>Cox, Kimberly H ; Takahashi, Joseph S</creatorcontrib><description>The mammalian circadian clock has evolved as an adaptation to the 24-h light/darkness cycle on earth. Maintaining cellular activities in synchrony with the activities of the organism (such as eating and sleeping) helps different tissue and organ systems coordinate and optimize their performance. The full extent of the mechanisms by which cells maintain the clock are still under investigation, but involve a core set of clock genes that regulate large networks of gene transcription both by direct transcriptional activation/repression as well as the recruitment of proteins that modify chromatin states more broadly.</description><identifier>ISSN: 0952-5041</identifier><identifier>EISSN: 1479-6813</identifier><identifier>DOI: 10.1530/JME-19-0153</identifier><identifier>PMID: 31557726</identifier><language>eng</language><publisher>England: Bioscientifica Ltd</publisher><subject>Animals ; Chromatin ; Circadian Clocks - genetics ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian rhythms ; Energy Metabolism - genetics ; Epigenesis, Genetic ; Gene Expression Regulation ; Gene silencing ; Humans ; Mammals ; Review ; Signal Transduction ; Transcription activation ; Transcriptional Activation</subject><ispartof>Journal of molecular endocrinology, 2019-11, Vol.63 (4), p.R93-R102</ispartof><rights>2019 Society for Endocrinology</rights><rights>Copyright Society for Endocrinology & BioScientifica Ltd. Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b493t-cf227b45651e8ef602f52cca3c36c5e3bb8138f84bb501f7b3818d16c7229f8e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3950,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31557726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cox, Kimberly H</creatorcontrib><creatorcontrib>Takahashi, Joseph S</creatorcontrib><title>Circadian clock genes and the transcriptional architecture of the clock mechanism</title><title>Journal of molecular endocrinology</title><addtitle>J Mol Endocrinol</addtitle><description>The mammalian circadian clock has evolved as an adaptation to the 24-h light/darkness cycle on earth. Maintaining cellular activities in synchrony with the activities of the organism (such as eating and sleeping) helps different tissue and organ systems coordinate and optimize their performance. The full extent of the mechanisms by which cells maintain the clock are still under investigation, but involve a core set of clock genes that regulate large networks of gene transcription both by direct transcriptional activation/repression as well as the recruitment of proteins that modify chromatin states more broadly.</description><subject>Animals</subject><subject>Chromatin</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian rhythms</subject><subject>Energy Metabolism - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Gene Expression Regulation</subject><subject>Gene silencing</subject><subject>Humans</subject><subject>Mammals</subject><subject>Review</subject><subject>Signal Transduction</subject><subject>Transcription activation</subject><subject>Transcriptional Activation</subject><issn>0952-5041</issn><issn>1479-6813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9rFTEQx4Mo9rV68i4LXgTZmp-b3YtQHrVaKiLoOSTzJn2pu8kz2S3435vnq8V68BSGfOY735kvIS8YPWVK0LeXn85bNrS0Fo_Iikk9tF3PxGOyooPiraKSHZHjUm5oRZiWT8mRYEppzbsV-bIOGewm2NjAmOB7c40RS2Pjppm32MzZxgI57OaQoh0bm2EbZoR5ydgk_5s59E0IWxtDmZ6RJ96OBZ_fvSfk2_vzr-sP7dXni4_rs6vWyUHMLXjOtZOqUwx79B3lXnEAK0B0oFA4V3fofS-dU5R57UTP-g3rQHM--B7FCXl30N0tbsINYKxmR7PLYbL5p0k2mIc_MWzNdbo1Xa_5IFUVeH0nkNOPBctsplAAx9FGTEsxdc7AZMf1Hn31D3qTllwPUilRL66qKVmpNwcKciolo783w6jZR2VqVIYNZh9VpV_-7f-e_ZNNBdgBcCEVCHWL4APY_4r-AhC3n3s</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Cox, Kimberly H</creator><creator>Takahashi, Joseph S</creator><general>Bioscientifica Ltd</general><general>Society for Endocrinology & BioScientifica Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201911</creationdate><title>Circadian clock genes and the transcriptional architecture of the clock mechanism</title><author>Cox, Kimberly H ; Takahashi, Joseph S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b493t-cf227b45651e8ef602f52cca3c36c5e3bb8138f84bb501f7b3818d16c7229f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Chromatin</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian rhythms</topic><topic>Energy Metabolism - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Gene Expression Regulation</topic><topic>Gene silencing</topic><topic>Humans</topic><topic>Mammals</topic><topic>Review</topic><topic>Signal Transduction</topic><topic>Transcription activation</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, Kimberly H</creatorcontrib><creatorcontrib>Takahashi, Joseph S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox, Kimberly H</au><au>Takahashi, Joseph S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circadian clock genes and the transcriptional architecture of the clock mechanism</atitle><jtitle>Journal of molecular endocrinology</jtitle><addtitle>J Mol Endocrinol</addtitle><date>2019-11</date><risdate>2019</risdate><volume>63</volume><issue>4</issue><spage>R93</spage><epage>R102</epage><pages>R93-R102</pages><issn>0952-5041</issn><eissn>1479-6813</eissn><abstract>The mammalian circadian clock has evolved as an adaptation to the 24-h light/darkness cycle on earth. Maintaining cellular activities in synchrony with the activities of the organism (such as eating and sleeping) helps different tissue and organ systems coordinate and optimize their performance. The full extent of the mechanisms by which cells maintain the clock are still under investigation, but involve a core set of clock genes that regulate large networks of gene transcription both by direct transcriptional activation/repression as well as the recruitment of proteins that modify chromatin states more broadly.</abstract><cop>England</cop><pub>Bioscientifica Ltd</pub><pmid>31557726</pmid><doi>10.1530/JME-19-0153</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-5041 |
ispartof | Journal of molecular endocrinology, 2019-11, Vol.63 (4), p.R93-R102 |
issn | 0952-5041 1479-6813 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6872945 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Society for Endocrinology Journals |
subjects | Animals Chromatin Circadian Clocks - genetics Circadian rhythm Circadian Rhythm - genetics Circadian rhythms Energy Metabolism - genetics Epigenesis, Genetic Gene Expression Regulation Gene silencing Humans Mammals Review Signal Transduction Transcription activation Transcriptional Activation |
title | Circadian clock genes and the transcriptional architecture of the clock mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circadian%20clock%20genes%20and%20the%20transcriptional%20architecture%20of%20the%20clock%20mechanism&rft.jtitle=Journal%20of%20molecular%20endocrinology&rft.au=Cox,%20Kimberly%20H&rft.date=2019-11&rft.volume=63&rft.issue=4&rft.spage=R93&rft.epage=R102&rft.pages=R93-R102&rft.issn=0952-5041&rft.eissn=1479-6813&rft_id=info:doi/10.1530/JME-19-0153&rft_dat=%3Cproquest_pubme%3E2314757224%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314757224&rft_id=info:pmid/31557726&rfr_iscdi=true |