Motion correction and the use of motion covariates in multiple-subject fMRI analysis
The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐corre...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2006-10, Vol.27 (10), p.779-788 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 788 |
---|---|
container_issue | 10 |
container_start_page | 779 |
container_title | Human brain mapping |
container_volume | 27 |
creator | Johnstone, Tom Ores Walsh, Kathleen S. Greischar, Larry L. Alexander, Andrew L. Fox, Andrew S. Davidson, Richard J. Oakes, Terrence R. |
description | The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block‐design and an event‐related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion‐corrected data and motion covariates included in the GLM; and (4) with non–motion‐corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event‐related data. When motion parameters were included in the GLM for event‐related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event‐related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/hbm.20219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19332194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5789-1778cb298b8e53aecc47acfef25343c8e7f5bdd7cb8152d78486755eddb2495d3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0Eoi8W_AGUDUhdpPUjju0NUqmgregUCQaxtBznhnFx4sFOCvPvcTvT16Ji5Sv5O-ce3YPQa4IPCMb0cNH0BxRTop6hbYKVKDFR7Pn1XPNSVYJsoZ2ULjEmhGPyEm2RuuK1JHIbzWdhdGEobIgR7M1ohrYYF1BMCYrQFf0tcGWiMyOkwg1FP_nRLT2UaWous67oZl_PstL4VXJpD73ojE_wavPuou-fPs6PT8vzLydnx0fnpeVCqpIIIW1DlWwkcGbA2koY20FHOauYlSA63rStsI0knLZCVrIWnEPbNrRSvGW76P3adzk1PbQWhjEar5fR9SaudDBOP_4Z3EL_DFe6loIwibPBu41BDL8nSKPuXbLgvRkgTClzCvM6H_N_YEZYvn-Vwf01aGNIKUJ3l4ZgfV2WzmXpm7Iy--Zh_Hty004G3m4Ak6zxXTSDdemek6TKCWnmDtfcH-dh9fRGffphdru6XCtcGuHvncLEX7oWTHD94-JEX_B6_u0zo1qxfyyru9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19332194</pqid></control><display><type>article</type><title>Motion correction and the use of motion covariates in multiple-subject fMRI analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Johnstone, Tom ; Ores Walsh, Kathleen S. ; Greischar, Larry L. ; Alexander, Andrew L. ; Fox, Andrew S. ; Davidson, Richard J. ; Oakes, Terrence R.</creator><creatorcontrib>Johnstone, Tom ; Ores Walsh, Kathleen S. ; Greischar, Larry L. ; Alexander, Andrew L. ; Fox, Andrew S. ; Davidson, Richard J. ; Oakes, Terrence R.</creatorcontrib><description>The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block‐design and an event‐related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion‐corrected data and motion covariates included in the GLM; and (4) with non–motion‐corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event‐related data. When motion parameters were included in the GLM for event‐related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event‐related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.20219</identifier><identifier>PMID: 16456818</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adolescent ; Adult ; analysis ; Biological and medical sciences ; block design ; Brain - physiology ; Brain Mapping ; covariates ; event-related design ; Eye and associated structures. Visual pathways and centers. Vision ; Female ; fMRI ; Fundamental and applied biological sciences. Psychology ; Humans ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging ; Male ; Medical sciences ; Middle Aged ; Miscellaneous ; Models, Theoretical ; motion correction ; Movement ; Nervous system ; Neuropharmacology ; Pharmacology. Drug treatments ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Sensitivity and Specificity ; Vertebrates: nervous system and sense organs</subject><ispartof>Human brain mapping, 2006-10, Vol.27 (10), p.779-788</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5789-1778cb298b8e53aecc47acfef25343c8e7f5bdd7cb8152d78486755eddb2495d3</citedby><cites>FETCH-LOGICAL-c5789-1778cb298b8e53aecc47acfef25343c8e7f5bdd7cb8152d78486755eddb2495d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871380/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871380/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18146892$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16456818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnstone, Tom</creatorcontrib><creatorcontrib>Ores Walsh, Kathleen S.</creatorcontrib><creatorcontrib>Greischar, Larry L.</creatorcontrib><creatorcontrib>Alexander, Andrew L.</creatorcontrib><creatorcontrib>Fox, Andrew S.</creatorcontrib><creatorcontrib>Davidson, Richard J.</creatorcontrib><creatorcontrib>Oakes, Terrence R.</creatorcontrib><title>Motion correction and the use of motion covariates in multiple-subject fMRI analysis</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block‐design and an event‐related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion‐corrected data and motion covariates included in the GLM; and (4) with non–motion‐corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event‐related data. When motion parameters were included in the GLM for event‐related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event‐related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.</description><subject>Adolescent</subject><subject>Adult</subject><subject>analysis</subject><subject>Biological and medical sciences</subject><subject>block design</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>covariates</subject><subject>event-related design</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Female</subject><subject>fMRI</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Miscellaneous</subject><subject>Models, Theoretical</subject><subject>motion correction</subject><subject>Movement</subject><subject>Nervous system</subject><subject>Neuropharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Sensitivity and Specificity</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0Eoi8W_AGUDUhdpPUjju0NUqmgregUCQaxtBznhnFx4sFOCvPvcTvT16Ji5Sv5O-ce3YPQa4IPCMb0cNH0BxRTop6hbYKVKDFR7Pn1XPNSVYJsoZ2ULjEmhGPyEm2RuuK1JHIbzWdhdGEobIgR7M1ohrYYF1BMCYrQFf0tcGWiMyOkwg1FP_nRLT2UaWous67oZl_PstL4VXJpD73ojE_wavPuou-fPs6PT8vzLydnx0fnpeVCqpIIIW1DlWwkcGbA2koY20FHOauYlSA63rStsI0knLZCVrIWnEPbNrRSvGW76P3adzk1PbQWhjEar5fR9SaudDBOP_4Z3EL_DFe6loIwibPBu41BDL8nSKPuXbLgvRkgTClzCvM6H_N_YEZYvn-Vwf01aGNIKUJ3l4ZgfV2WzmXpm7Iy--Zh_Hty004G3m4Ak6zxXTSDdemek6TKCWnmDtfcH-dh9fRGffphdru6XCtcGuHvncLEX7oWTHD94-JEX_B6_u0zo1qxfyyru9g</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Johnstone, Tom</creator><creator>Ores Walsh, Kathleen S.</creator><creator>Greischar, Larry L.</creator><creator>Alexander, Andrew L.</creator><creator>Fox, Andrew S.</creator><creator>Davidson, Richard J.</creator><creator>Oakes, Terrence R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200610</creationdate><title>Motion correction and the use of motion covariates in multiple-subject fMRI analysis</title><author>Johnstone, Tom ; Ores Walsh, Kathleen S. ; Greischar, Larry L. ; Alexander, Andrew L. ; Fox, Andrew S. ; Davidson, Richard J. ; Oakes, Terrence R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5789-1778cb298b8e53aecc47acfef25343c8e7f5bdd7cb8152d78486755eddb2495d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>analysis</topic><topic>Biological and medical sciences</topic><topic>block design</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>covariates</topic><topic>event-related design</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Female</topic><topic>fMRI</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Miscellaneous</topic><topic>Models, Theoretical</topic><topic>motion correction</topic><topic>Movement</topic><topic>Nervous system</topic><topic>Neuropharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Sensitivity and Specificity</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnstone, Tom</creatorcontrib><creatorcontrib>Ores Walsh, Kathleen S.</creatorcontrib><creatorcontrib>Greischar, Larry L.</creatorcontrib><creatorcontrib>Alexander, Andrew L.</creatorcontrib><creatorcontrib>Fox, Andrew S.</creatorcontrib><creatorcontrib>Davidson, Richard J.</creatorcontrib><creatorcontrib>Oakes, Terrence R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnstone, Tom</au><au>Ores Walsh, Kathleen S.</au><au>Greischar, Larry L.</au><au>Alexander, Andrew L.</au><au>Fox, Andrew S.</au><au>Davidson, Richard J.</au><au>Oakes, Terrence R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion correction and the use of motion covariates in multiple-subject fMRI analysis</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2006-10</date><risdate>2006</risdate><volume>27</volume><issue>10</issue><spage>779</spage><epage>788</epage><pages>779-788</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block‐design and an event‐related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion‐corrected data and motion covariates included in the GLM; and (4) with non–motion‐corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event‐related data. When motion parameters were included in the GLM for event‐related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event‐related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16456818</pmid><doi>10.1002/hbm.20219</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2006-10, Vol.27 (10), p.779-788 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871380 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adolescent Adult analysis Biological and medical sciences block design Brain - physiology Brain Mapping covariates event-related design Eye and associated structures. Visual pathways and centers. Vision Female fMRI Fundamental and applied biological sciences. Psychology Humans Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging Male Medical sciences Middle Aged Miscellaneous Models, Theoretical motion correction Movement Nervous system Neuropharmacology Pharmacology. Drug treatments Radiodiagnosis. Nmr imagery. Nmr spectrometry Sensitivity and Specificity Vertebrates: nervous system and sense organs |
title | Motion correction and the use of motion covariates in multiple-subject fMRI analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20correction%20and%20the%20use%20of%20motion%20covariates%20in%20multiple-subject%20fMRI%20analysis&rft.jtitle=Human%20brain%20mapping&rft.au=Johnstone,%20Tom&rft.date=2006-10&rft.volume=27&rft.issue=10&rft.spage=779&rft.epage=788&rft.pages=779-788&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.20219&rft_dat=%3Cproquest_pubme%3E19332194%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19332194&rft_id=info:pmid/16456818&rfr_iscdi=true |