Motion correction and the use of motion covariates in multiple-subject fMRI analysis

The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐corre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2006-10, Vol.27 (10), p.779-788
Hauptverfasser: Johnstone, Tom, Ores Walsh, Kathleen S., Greischar, Larry L., Alexander, Andrew L., Fox, Andrew S., Davidson, Richard J., Oakes, Terrence R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue 10
container_start_page 779
container_title Human brain mapping
container_volume 27
creator Johnstone, Tom
Ores Walsh, Kathleen S.
Greischar, Larry L.
Alexander, Andrew L.
Fox, Andrew S.
Davidson, Richard J.
Oakes, Terrence R.
description The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block‐design and an event‐related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion‐corrected data and motion covariates included in the GLM; and (4) with non–motion‐corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event‐related data. When motion parameters were included in the GLM for event‐related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event‐related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.
doi_str_mv 10.1002/hbm.20219
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19332194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5789-1778cb298b8e53aecc47acfef25343c8e7f5bdd7cb8152d78486755eddb2495d3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0Eoi8W_AGUDUhdpPUjju0NUqmgregUCQaxtBznhnFx4sFOCvPvcTvT16Ji5Sv5O-ce3YPQa4IPCMb0cNH0BxRTop6hbYKVKDFR7Pn1XPNSVYJsoZ2ULjEmhGPyEm2RuuK1JHIbzWdhdGEobIgR7M1ohrYYF1BMCYrQFf0tcGWiMyOkwg1FP_nRLT2UaWous67oZl_PstL4VXJpD73ojE_wavPuou-fPs6PT8vzLydnx0fnpeVCqpIIIW1DlWwkcGbA2koY20FHOauYlSA63rStsI0knLZCVrIWnEPbNrRSvGW76P3adzk1PbQWhjEar5fR9SaudDBOP_4Z3EL_DFe6loIwibPBu41BDL8nSKPuXbLgvRkgTClzCvM6H_N_YEZYvn-Vwf01aGNIKUJ3l4ZgfV2WzmXpm7Iy--Zh_Hty004G3m4Ak6zxXTSDdemek6TKCWnmDtfcH-dh9fRGffphdru6XCtcGuHvncLEX7oWTHD94-JEX_B6_u0zo1qxfyyru9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19332194</pqid></control><display><type>article</type><title>Motion correction and the use of motion covariates in multiple-subject fMRI analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Johnstone, Tom ; Ores Walsh, Kathleen S. ; Greischar, Larry L. ; Alexander, Andrew L. ; Fox, Andrew S. ; Davidson, Richard J. ; Oakes, Terrence R.</creator><creatorcontrib>Johnstone, Tom ; Ores Walsh, Kathleen S. ; Greischar, Larry L. ; Alexander, Andrew L. ; Fox, Andrew S. ; Davidson, Richard J. ; Oakes, Terrence R.</creatorcontrib><description>The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block‐design and an event‐related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion‐corrected data and motion covariates included in the GLM; and (4) with non–motion‐corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event‐related data. When motion parameters were included in the GLM for event‐related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event‐related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.20219</identifier><identifier>PMID: 16456818</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adolescent ; Adult ; analysis ; Biological and medical sciences ; block design ; Brain - physiology ; Brain Mapping ; covariates ; event-related design ; Eye and associated structures. Visual pathways and centers. Vision ; Female ; fMRI ; Fundamental and applied biological sciences. Psychology ; Humans ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging ; Male ; Medical sciences ; Middle Aged ; Miscellaneous ; Models, Theoretical ; motion correction ; Movement ; Nervous system ; Neuropharmacology ; Pharmacology. Drug treatments ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Sensitivity and Specificity ; Vertebrates: nervous system and sense organs</subject><ispartof>Human brain mapping, 2006-10, Vol.27 (10), p.779-788</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5789-1778cb298b8e53aecc47acfef25343c8e7f5bdd7cb8152d78486755eddb2495d3</citedby><cites>FETCH-LOGICAL-c5789-1778cb298b8e53aecc47acfef25343c8e7f5bdd7cb8152d78486755eddb2495d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871380/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871380/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18146892$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16456818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnstone, Tom</creatorcontrib><creatorcontrib>Ores Walsh, Kathleen S.</creatorcontrib><creatorcontrib>Greischar, Larry L.</creatorcontrib><creatorcontrib>Alexander, Andrew L.</creatorcontrib><creatorcontrib>Fox, Andrew S.</creatorcontrib><creatorcontrib>Davidson, Richard J.</creatorcontrib><creatorcontrib>Oakes, Terrence R.</creatorcontrib><title>Motion correction and the use of motion covariates in multiple-subject fMRI analysis</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block‐design and an event‐related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion‐corrected data and motion covariates included in the GLM; and (4) with non–motion‐corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event‐related data. When motion parameters were included in the GLM for event‐related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event‐related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.</description><subject>Adolescent</subject><subject>Adult</subject><subject>analysis</subject><subject>Biological and medical sciences</subject><subject>block design</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>covariates</subject><subject>event-related design</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Female</subject><subject>fMRI</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Miscellaneous</subject><subject>Models, Theoretical</subject><subject>motion correction</subject><subject>Movement</subject><subject>Nervous system</subject><subject>Neuropharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Sensitivity and Specificity</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0Eoi8W_AGUDUhdpPUjju0NUqmgregUCQaxtBznhnFx4sFOCvPvcTvT16Ji5Sv5O-ce3YPQa4IPCMb0cNH0BxRTop6hbYKVKDFR7Pn1XPNSVYJsoZ2ULjEmhGPyEm2RuuK1JHIbzWdhdGEobIgR7M1ohrYYF1BMCYrQFf0tcGWiMyOkwg1FP_nRLT2UaWous67oZl_PstL4VXJpD73ojE_wavPuou-fPs6PT8vzLydnx0fnpeVCqpIIIW1DlWwkcGbA2koY20FHOauYlSA63rStsI0knLZCVrIWnEPbNrRSvGW76P3adzk1PbQWhjEar5fR9SaudDBOP_4Z3EL_DFe6loIwibPBu41BDL8nSKPuXbLgvRkgTClzCvM6H_N_YEZYvn-Vwf01aGNIKUJ3l4ZgfV2WzmXpm7Iy--Zh_Hty004G3m4Ak6zxXTSDdemek6TKCWnmDtfcH-dh9fRGffphdru6XCtcGuHvncLEX7oWTHD94-JEX_B6_u0zo1qxfyyru9g</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Johnstone, Tom</creator><creator>Ores Walsh, Kathleen S.</creator><creator>Greischar, Larry L.</creator><creator>Alexander, Andrew L.</creator><creator>Fox, Andrew S.</creator><creator>Davidson, Richard J.</creator><creator>Oakes, Terrence R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200610</creationdate><title>Motion correction and the use of motion covariates in multiple-subject fMRI analysis</title><author>Johnstone, Tom ; Ores Walsh, Kathleen S. ; Greischar, Larry L. ; Alexander, Andrew L. ; Fox, Andrew S. ; Davidson, Richard J. ; Oakes, Terrence R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5789-1778cb298b8e53aecc47acfef25343c8e7f5bdd7cb8152d78486755eddb2495d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>analysis</topic><topic>Biological and medical sciences</topic><topic>block design</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>covariates</topic><topic>event-related design</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Female</topic><topic>fMRI</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Miscellaneous</topic><topic>Models, Theoretical</topic><topic>motion correction</topic><topic>Movement</topic><topic>Nervous system</topic><topic>Neuropharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Sensitivity and Specificity</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnstone, Tom</creatorcontrib><creatorcontrib>Ores Walsh, Kathleen S.</creatorcontrib><creatorcontrib>Greischar, Larry L.</creatorcontrib><creatorcontrib>Alexander, Andrew L.</creatorcontrib><creatorcontrib>Fox, Andrew S.</creatorcontrib><creatorcontrib>Davidson, Richard J.</creatorcontrib><creatorcontrib>Oakes, Terrence R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnstone, Tom</au><au>Ores Walsh, Kathleen S.</au><au>Greischar, Larry L.</au><au>Alexander, Andrew L.</au><au>Fox, Andrew S.</au><au>Davidson, Richard J.</au><au>Oakes, Terrence R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion correction and the use of motion covariates in multiple-subject fMRI analysis</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2006-10</date><risdate>2006</risdate><volume>27</volume><issue>10</issue><spage>779</spage><epage>788</epage><pages>779-788</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event‐related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task‐correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block‐design and an event‐related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion‐corrected data and motion covariates included in the GLM; and (4) with non–motion‐corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event‐related data. When motion parameters were included in the GLM for event‐related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event‐related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16456818</pmid><doi>10.1002/hbm.20219</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2006-10, Vol.27 (10), p.779-788
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871380
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adolescent
Adult
analysis
Biological and medical sciences
block design
Brain - physiology
Brain Mapping
covariates
event-related design
Eye and associated structures. Visual pathways and centers. Vision
Female
fMRI
Fundamental and applied biological sciences. Psychology
Humans
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging
Male
Medical sciences
Middle Aged
Miscellaneous
Models, Theoretical
motion correction
Movement
Nervous system
Neuropharmacology
Pharmacology. Drug treatments
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Sensitivity and Specificity
Vertebrates: nervous system and sense organs
title Motion correction and the use of motion covariates in multiple-subject fMRI analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20correction%20and%20the%20use%20of%20motion%20covariates%20in%20multiple-subject%20fMRI%20analysis&rft.jtitle=Human%20brain%20mapping&rft.au=Johnstone,%20Tom&rft.date=2006-10&rft.volume=27&rft.issue=10&rft.spage=779&rft.epage=788&rft.pages=779-788&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.20219&rft_dat=%3Cproquest_pubme%3E19332194%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19332194&rft_id=info:pmid/16456818&rfr_iscdi=true