Assessment of the increase in variability when combining volumetric data from different scanners

In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2009-02, Vol.30 (2), p.355-368
Hauptverfasser: Reig, Santiago, Sánchez-González, Javier, Arango, Celso, Castro, Josefina, González-Pinto, Ana, Ortuño, Felipe, Crespo-Facorro, Benedicto, Bargalló, Nuria, Desco, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 2
container_start_page 355
container_title Human brain mapping
container_volume 30
creator Reig, Santiago
Sánchez-González, Javier
Arango, Celso
Castro, Josefina
González-Pinto, Ana
Ortuño, Felipe
Crespo-Facorro, Benedicto
Bargalló, Nuria
Desco, Manuel
description In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating the scans of five volunteers at each of the sites. Using a semiautomatic method based on the Talairach atlas, and SPM algorithms for tissue segmentation (multimodal T1 and T2, or T1‐only), we obtained volume measurements of the main brain lobes (frontal, parietal, occipital, temporal) and for each tissue type. Our results suggest that pooling of multisite data adds small error for whole brain measurements, intersite coefficient of variation (CV) ranging from 1.8 to 5.2%, respectively, for GM and CSF. However, in the occipital lobe, intersite CV can be as high as 11.7% for WM and 17.3% for CSF. Compared with the intersite, intrasite CV values were always much lower. Whenever possible, T1 and T2 tissue segmentation methods should be used because they yield more consistent volume measurements between sites than T1‐only, especially when some of the scans were obtained with different sequence parameters and pixel size from those of the other sites. Our study shows that highest compatibility among scanners would be obtained using equipments of the same manufacturer and also image acquisition parameters as similar as possible. After validation, data from a specific ROI or scanner showing values markedly different from the other sites might be excluded from the analysis. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.
doi_str_mv 10.1002/hbm.20511
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66861190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5781-a6e7ce4126c97f0cb852dc30cbc05605bafc632ab5d660333f85f5e6f4cb7b6b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEon_gwBdAvlCph7SeOB4nF6SyhbaowAXE0diO3TUkTrGzW_bb42W3CxwQJz_Jv3nzNK8ongE9AUqr07keTirKAR4U-0BbUVJo2cO1Rl62tYC94iClr5QCcAqPiz1oKNa8wf3iy1lKNqXBhomMjkxzS3ww0aq0FmSpolfa935akbu5DcSMg_bBhxuyHPvFYKfoDenUpIiL40A675yNa7NkVAg2pifFI6f6ZJ9u38Pi05vXH2eX5fWHi6vZ2XVpuGigVGiFsTVUaFrhqNENrzrDsjCUI-VaOYOsUpp3iJQx5hruuEVXGy00anZYvNz43i70YDuTM0TVy9voBxVXclRe_v0T_FzejEuJjQBo6mxwtDWI4_eFTZMcfDK271Ww4yJJxAYBWvpfsKJM1MAwg8cb0MQxpWjdLg1QuS5O5uLkr-Iy-_zP-L_JbVMZeLEFVD5t76IKxqcdV-WuK6x45k433J3v7erfG-Xlq3f3q8vNhE-T_bGbUPGbRMEEl5_fX8i3AtvZecslZT8BiSzAjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20374136</pqid></control><display><type>article</type><title>Assessment of the increase in variability when combining volumetric data from different scanners</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Reig, Santiago ; Sánchez-González, Javier ; Arango, Celso ; Castro, Josefina ; González-Pinto, Ana ; Ortuño, Felipe ; Crespo-Facorro, Benedicto ; Bargalló, Nuria ; Desco, Manuel</creator><creatorcontrib>Reig, Santiago ; Sánchez-González, Javier ; Arango, Celso ; Castro, Josefina ; González-Pinto, Ana ; Ortuño, Felipe ; Crespo-Facorro, Benedicto ; Bargalló, Nuria ; Desco, Manuel</creatorcontrib><description>In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating the scans of five volunteers at each of the sites. Using a semiautomatic method based on the Talairach atlas, and SPM algorithms for tissue segmentation (multimodal T1 and T2, or T1‐only), we obtained volume measurements of the main brain lobes (frontal, parietal, occipital, temporal) and for each tissue type. Our results suggest that pooling of multisite data adds small error for whole brain measurements, intersite coefficient of variation (CV) ranging from 1.8 to 5.2%, respectively, for GM and CSF. However, in the occipital lobe, intersite CV can be as high as 11.7% for WM and 17.3% for CSF. Compared with the intersite, intrasite CV values were always much lower. Whenever possible, T1 and T2 tissue segmentation methods should be used because they yield more consistent volume measurements between sites than T1‐only, especially when some of the scans were obtained with different sequence parameters and pixel size from those of the other sites. Our study shows that highest compatibility among scanners would be obtained using equipments of the same manufacturer and also image acquisition parameters as similar as possible. After validation, data from a specific ROI or scanner showing values markedly different from the other sites might be excluded from the analysis. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.20511</identifier><identifier>PMID: 18064586</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Anthropometry - instrumentation ; Anthropometry - methods ; Biological and medical sciences ; brain ; Brain - anatomy &amp; histology ; Brain Mapping - instrumentation ; Brain Mapping - methods ; Female ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - standards ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - standards ; Male ; Medical sciences ; Meta-Analysis as Topic ; Middle Aged ; Miscellaneous. Technology ; multicenter ; Nervous system ; Observer Variation ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; reliability ; Reproducibility of Results ; segmentation ; volumetric data</subject><ispartof>Human brain mapping, 2009-02, Vol.30 (2), p.355-368</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5781-a6e7ce4126c97f0cb852dc30cbc05605bafc632ab5d660333f85f5e6f4cb7b6b3</citedby><cites>FETCH-LOGICAL-c5781-a6e7ce4126c97f0cb852dc30cbc05605bafc632ab5d660333f85f5e6f4cb7b6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871184/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871184/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21062625$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18064586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reig, Santiago</creatorcontrib><creatorcontrib>Sánchez-González, Javier</creatorcontrib><creatorcontrib>Arango, Celso</creatorcontrib><creatorcontrib>Castro, Josefina</creatorcontrib><creatorcontrib>González-Pinto, Ana</creatorcontrib><creatorcontrib>Ortuño, Felipe</creatorcontrib><creatorcontrib>Crespo-Facorro, Benedicto</creatorcontrib><creatorcontrib>Bargalló, Nuria</creatorcontrib><creatorcontrib>Desco, Manuel</creatorcontrib><title>Assessment of the increase in variability when combining volumetric data from different scanners</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating the scans of five volunteers at each of the sites. Using a semiautomatic method based on the Talairach atlas, and SPM algorithms for tissue segmentation (multimodal T1 and T2, or T1‐only), we obtained volume measurements of the main brain lobes (frontal, parietal, occipital, temporal) and for each tissue type. Our results suggest that pooling of multisite data adds small error for whole brain measurements, intersite coefficient of variation (CV) ranging from 1.8 to 5.2%, respectively, for GM and CSF. However, in the occipital lobe, intersite CV can be as high as 11.7% for WM and 17.3% for CSF. Compared with the intersite, intrasite CV values were always much lower. Whenever possible, T1 and T2 tissue segmentation methods should be used because they yield more consistent volume measurements between sites than T1‐only, especially when some of the scans were obtained with different sequence parameters and pixel size from those of the other sites. Our study shows that highest compatibility among scanners would be obtained using equipments of the same manufacturer and also image acquisition parameters as similar as possible. After validation, data from a specific ROI or scanner showing values markedly different from the other sites might be excluded from the analysis. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Anthropometry - instrumentation</subject><subject>Anthropometry - methods</subject><subject>Biological and medical sciences</subject><subject>brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain Mapping - instrumentation</subject><subject>Brain Mapping - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - standards</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - standards</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Meta-Analysis as Topic</subject><subject>Middle Aged</subject><subject>Miscellaneous. Technology</subject><subject>multicenter</subject><subject>Nervous system</subject><subject>Observer Variation</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>reliability</subject><subject>Reproducibility of Results</subject><subject>segmentation</subject><subject>volumetric data</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxSMEon_gwBdAvlCph7SeOB4nF6SyhbaowAXE0diO3TUkTrGzW_bb42W3CxwQJz_Jv3nzNK8ongE9AUqr07keTirKAR4U-0BbUVJo2cO1Rl62tYC94iClr5QCcAqPiz1oKNa8wf3iy1lKNqXBhomMjkxzS3ww0aq0FmSpolfa935akbu5DcSMg_bBhxuyHPvFYKfoDenUpIiL40A675yNa7NkVAg2pifFI6f6ZJ9u38Pi05vXH2eX5fWHi6vZ2XVpuGigVGiFsTVUaFrhqNENrzrDsjCUI-VaOYOsUpp3iJQx5hruuEVXGy00anZYvNz43i70YDuTM0TVy9voBxVXclRe_v0T_FzejEuJjQBo6mxwtDWI4_eFTZMcfDK271Ww4yJJxAYBWvpfsKJM1MAwg8cb0MQxpWjdLg1QuS5O5uLkr-Iy-_zP-L_JbVMZeLEFVD5t76IKxqcdV-WuK6x45k433J3v7erfG-Xlq3f3q8vNhE-T_bGbUPGbRMEEl5_fX8i3AtvZecslZT8BiSzAjA</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Reig, Santiago</creator><creator>Sánchez-González, Javier</creator><creator>Arango, Celso</creator><creator>Castro, Josefina</creator><creator>González-Pinto, Ana</creator><creator>Ortuño, Felipe</creator><creator>Crespo-Facorro, Benedicto</creator><creator>Bargalló, Nuria</creator><creator>Desco, Manuel</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200902</creationdate><title>Assessment of the increase in variability when combining volumetric data from different scanners</title><author>Reig, Santiago ; Sánchez-González, Javier ; Arango, Celso ; Castro, Josefina ; González-Pinto, Ana ; Ortuño, Felipe ; Crespo-Facorro, Benedicto ; Bargalló, Nuria ; Desco, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5781-a6e7ce4126c97f0cb852dc30cbc05605bafc632ab5d660333f85f5e6f4cb7b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Anthropometry - instrumentation</topic><topic>Anthropometry - methods</topic><topic>Biological and medical sciences</topic><topic>brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain Mapping - instrumentation</topic><topic>Brain Mapping - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - standards</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - standards</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Meta-Analysis as Topic</topic><topic>Middle Aged</topic><topic>Miscellaneous. Technology</topic><topic>multicenter</topic><topic>Nervous system</topic><topic>Observer Variation</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>reliability</topic><topic>Reproducibility of Results</topic><topic>segmentation</topic><topic>volumetric data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reig, Santiago</creatorcontrib><creatorcontrib>Sánchez-González, Javier</creatorcontrib><creatorcontrib>Arango, Celso</creatorcontrib><creatorcontrib>Castro, Josefina</creatorcontrib><creatorcontrib>González-Pinto, Ana</creatorcontrib><creatorcontrib>Ortuño, Felipe</creatorcontrib><creatorcontrib>Crespo-Facorro, Benedicto</creatorcontrib><creatorcontrib>Bargalló, Nuria</creatorcontrib><creatorcontrib>Desco, Manuel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reig, Santiago</au><au>Sánchez-González, Javier</au><au>Arango, Celso</au><au>Castro, Josefina</au><au>González-Pinto, Ana</au><au>Ortuño, Felipe</au><au>Crespo-Facorro, Benedicto</au><au>Bargalló, Nuria</au><au>Desco, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the increase in variability when combining volumetric data from different scanners</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2009-02</date><risdate>2009</risdate><volume>30</volume><issue>2</issue><spage>355</spage><epage>368</epage><pages>355-368</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating the scans of five volunteers at each of the sites. Using a semiautomatic method based on the Talairach atlas, and SPM algorithms for tissue segmentation (multimodal T1 and T2, or T1‐only), we obtained volume measurements of the main brain lobes (frontal, parietal, occipital, temporal) and for each tissue type. Our results suggest that pooling of multisite data adds small error for whole brain measurements, intersite coefficient of variation (CV) ranging from 1.8 to 5.2%, respectively, for GM and CSF. However, in the occipital lobe, intersite CV can be as high as 11.7% for WM and 17.3% for CSF. Compared with the intersite, intrasite CV values were always much lower. Whenever possible, T1 and T2 tissue segmentation methods should be used because they yield more consistent volume measurements between sites than T1‐only, especially when some of the scans were obtained with different sequence parameters and pixel size from those of the other sites. Our study shows that highest compatibility among scanners would be obtained using equipments of the same manufacturer and also image acquisition parameters as similar as possible. After validation, data from a specific ROI or scanner showing values markedly different from the other sites might be excluded from the analysis. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18064586</pmid><doi>10.1002/hbm.20511</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2009-02, Vol.30 (2), p.355-368
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871184
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Adult
Anthropometry - instrumentation
Anthropometry - methods
Biological and medical sciences
brain
Brain - anatomy & histology
Brain Mapping - instrumentation
Brain Mapping - methods
Female
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Male
Medical sciences
Meta-Analysis as Topic
Middle Aged
Miscellaneous. Technology
multicenter
Nervous system
Observer Variation
Radiodiagnosis. Nmr imagery. Nmr spectrometry
reliability
Reproducibility of Results
segmentation
volumetric data
title Assessment of the increase in variability when combining volumetric data from different scanners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20increase%20in%20variability%20when%20combining%20volumetric%20data%20from%20different%20scanners&rft.jtitle=Human%20brain%20mapping&rft.au=Reig,%20Santiago&rft.date=2009-02&rft.volume=30&rft.issue=2&rft.spage=355&rft.epage=368&rft.pages=355-368&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.20511&rft_dat=%3Cproquest_pubme%3E66861190%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20374136&rft_id=info:pmid/18064586&rfr_iscdi=true