Assessment of the increase in variability when combining volumetric data from different scanners
In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2009-02, Vol.30 (2), p.355-368 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 2 |
container_start_page | 355 |
container_title | Human brain mapping |
container_volume | 30 |
creator | Reig, Santiago Sánchez-González, Javier Arango, Celso Castro, Josefina González-Pinto, Ana Ortuño, Felipe Crespo-Facorro, Benedicto Bargalló, Nuria Desco, Manuel |
description | In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating the scans of five volunteers at each of the sites. Using a semiautomatic method based on the Talairach atlas, and SPM algorithms for tissue segmentation (multimodal T1 and T2, or T1‐only), we obtained volume measurements of the main brain lobes (frontal, parietal, occipital, temporal) and for each tissue type. Our results suggest that pooling of multisite data adds small error for whole brain measurements, intersite coefficient of variation (CV) ranging from 1.8 to 5.2%, respectively, for GM and CSF. However, in the occipital lobe, intersite CV can be as high as 11.7% for WM and 17.3% for CSF. Compared with the intersite, intrasite CV values were always much lower. Whenever possible, T1 and T2 tissue segmentation methods should be used because they yield more consistent volume measurements between sites than T1‐only, especially when some of the scans were obtained with different sequence parameters and pixel size from those of the other sites. Our study shows that highest compatibility among scanners would be obtained using equipments of the same manufacturer and also image acquisition parameters as similar as possible. After validation, data from a specific ROI or scanner showing values markedly different from the other sites might be excluded from the analysis. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/hbm.20511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66861190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5781-a6e7ce4126c97f0cb852dc30cbc05605bafc632ab5d660333f85f5e6f4cb7b6b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEon_gwBdAvlCph7SeOB4nF6SyhbaowAXE0diO3TUkTrGzW_bb42W3CxwQJz_Jv3nzNK8ongE9AUqr07keTirKAR4U-0BbUVJo2cO1Rl62tYC94iClr5QCcAqPiz1oKNa8wf3iy1lKNqXBhomMjkxzS3ww0aq0FmSpolfa935akbu5DcSMg_bBhxuyHPvFYKfoDenUpIiL40A675yNa7NkVAg2pifFI6f6ZJ9u38Pi05vXH2eX5fWHi6vZ2XVpuGigVGiFsTVUaFrhqNENrzrDsjCUI-VaOYOsUpp3iJQx5hruuEVXGy00anZYvNz43i70YDuTM0TVy9voBxVXclRe_v0T_FzejEuJjQBo6mxwtDWI4_eFTZMcfDK271Ww4yJJxAYBWvpfsKJM1MAwg8cb0MQxpWjdLg1QuS5O5uLkr-Iy-_zP-L_JbVMZeLEFVD5t76IKxqcdV-WuK6x45k433J3v7erfG-Xlq3f3q8vNhE-T_bGbUPGbRMEEl5_fX8i3AtvZecslZT8BiSzAjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20374136</pqid></control><display><type>article</type><title>Assessment of the increase in variability when combining volumetric data from different scanners</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Reig, Santiago ; Sánchez-González, Javier ; Arango, Celso ; Castro, Josefina ; González-Pinto, Ana ; Ortuño, Felipe ; Crespo-Facorro, Benedicto ; Bargalló, Nuria ; Desco, Manuel</creator><creatorcontrib>Reig, Santiago ; Sánchez-González, Javier ; Arango, Celso ; Castro, Josefina ; González-Pinto, Ana ; Ortuño, Felipe ; Crespo-Facorro, Benedicto ; Bargalló, Nuria ; Desco, Manuel</creatorcontrib><description>In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating the scans of five volunteers at each of the sites. Using a semiautomatic method based on the Talairach atlas, and SPM algorithms for tissue segmentation (multimodal T1 and T2, or T1‐only), we obtained volume measurements of the main brain lobes (frontal, parietal, occipital, temporal) and for each tissue type. Our results suggest that pooling of multisite data adds small error for whole brain measurements, intersite coefficient of variation (CV) ranging from 1.8 to 5.2%, respectively, for GM and CSF. However, in the occipital lobe, intersite CV can be as high as 11.7% for WM and 17.3% for CSF. Compared with the intersite, intrasite CV values were always much lower. Whenever possible, T1 and T2 tissue segmentation methods should be used because they yield more consistent volume measurements between sites than T1‐only, especially when some of the scans were obtained with different sequence parameters and pixel size from those of the other sites. Our study shows that highest compatibility among scanners would be obtained using equipments of the same manufacturer and also image acquisition parameters as similar as possible. After validation, data from a specific ROI or scanner showing values markedly different from the other sites might be excluded from the analysis. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.20511</identifier><identifier>PMID: 18064586</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Anthropometry - instrumentation ; Anthropometry - methods ; Biological and medical sciences ; brain ; Brain - anatomy & histology ; Brain Mapping - instrumentation ; Brain Mapping - methods ; Female ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - standards ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - standards ; Male ; Medical sciences ; Meta-Analysis as Topic ; Middle Aged ; Miscellaneous. Technology ; multicenter ; Nervous system ; Observer Variation ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; reliability ; Reproducibility of Results ; segmentation ; volumetric data</subject><ispartof>Human brain mapping, 2009-02, Vol.30 (2), p.355-368</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5781-a6e7ce4126c97f0cb852dc30cbc05605bafc632ab5d660333f85f5e6f4cb7b6b3</citedby><cites>FETCH-LOGICAL-c5781-a6e7ce4126c97f0cb852dc30cbc05605bafc632ab5d660333f85f5e6f4cb7b6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871184/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871184/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21062625$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18064586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reig, Santiago</creatorcontrib><creatorcontrib>Sánchez-González, Javier</creatorcontrib><creatorcontrib>Arango, Celso</creatorcontrib><creatorcontrib>Castro, Josefina</creatorcontrib><creatorcontrib>González-Pinto, Ana</creatorcontrib><creatorcontrib>Ortuño, Felipe</creatorcontrib><creatorcontrib>Crespo-Facorro, Benedicto</creatorcontrib><creatorcontrib>Bargalló, Nuria</creatorcontrib><creatorcontrib>Desco, Manuel</creatorcontrib><title>Assessment of the increase in variability when combining volumetric data from different scanners</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating the scans of five volunteers at each of the sites. Using a semiautomatic method based on the Talairach atlas, and SPM algorithms for tissue segmentation (multimodal T1 and T2, or T1‐only), we obtained volume measurements of the main brain lobes (frontal, parietal, occipital, temporal) and for each tissue type. Our results suggest that pooling of multisite data adds small error for whole brain measurements, intersite coefficient of variation (CV) ranging from 1.8 to 5.2%, respectively, for GM and CSF. However, in the occipital lobe, intersite CV can be as high as 11.7% for WM and 17.3% for CSF. Compared with the intersite, intrasite CV values were always much lower. Whenever possible, T1 and T2 tissue segmentation methods should be used because they yield more consistent volume measurements between sites than T1‐only, especially when some of the scans were obtained with different sequence parameters and pixel size from those of the other sites. Our study shows that highest compatibility among scanners would be obtained using equipments of the same manufacturer and also image acquisition parameters as similar as possible. After validation, data from a specific ROI or scanner showing values markedly different from the other sites might be excluded from the analysis. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Anthropometry - instrumentation</subject><subject>Anthropometry - methods</subject><subject>Biological and medical sciences</subject><subject>brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain Mapping - instrumentation</subject><subject>Brain Mapping - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - standards</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - standards</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Meta-Analysis as Topic</subject><subject>Middle Aged</subject><subject>Miscellaneous. Technology</subject><subject>multicenter</subject><subject>Nervous system</subject><subject>Observer Variation</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>reliability</subject><subject>Reproducibility of Results</subject><subject>segmentation</subject><subject>volumetric data</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxSMEon_gwBdAvlCph7SeOB4nF6SyhbaowAXE0diO3TUkTrGzW_bb42W3CxwQJz_Jv3nzNK8ongE9AUqr07keTirKAR4U-0BbUVJo2cO1Rl62tYC94iClr5QCcAqPiz1oKNa8wf3iy1lKNqXBhomMjkxzS3ww0aq0FmSpolfa935akbu5DcSMg_bBhxuyHPvFYKfoDenUpIiL40A675yNa7NkVAg2pifFI6f6ZJ9u38Pi05vXH2eX5fWHi6vZ2XVpuGigVGiFsTVUaFrhqNENrzrDsjCUI-VaOYOsUpp3iJQx5hruuEVXGy00anZYvNz43i70YDuTM0TVy9voBxVXclRe_v0T_FzejEuJjQBo6mxwtDWI4_eFTZMcfDK271Ww4yJJxAYBWvpfsKJM1MAwg8cb0MQxpWjdLg1QuS5O5uLkr-Iy-_zP-L_JbVMZeLEFVD5t76IKxqcdV-WuK6x45k433J3v7erfG-Xlq3f3q8vNhE-T_bGbUPGbRMEEl5_fX8i3AtvZecslZT8BiSzAjA</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Reig, Santiago</creator><creator>Sánchez-González, Javier</creator><creator>Arango, Celso</creator><creator>Castro, Josefina</creator><creator>González-Pinto, Ana</creator><creator>Ortuño, Felipe</creator><creator>Crespo-Facorro, Benedicto</creator><creator>Bargalló, Nuria</creator><creator>Desco, Manuel</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200902</creationdate><title>Assessment of the increase in variability when combining volumetric data from different scanners</title><author>Reig, Santiago ; Sánchez-González, Javier ; Arango, Celso ; Castro, Josefina ; González-Pinto, Ana ; Ortuño, Felipe ; Crespo-Facorro, Benedicto ; Bargalló, Nuria ; Desco, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5781-a6e7ce4126c97f0cb852dc30cbc05605bafc632ab5d660333f85f5e6f4cb7b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Anthropometry - instrumentation</topic><topic>Anthropometry - methods</topic><topic>Biological and medical sciences</topic><topic>brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain Mapping - instrumentation</topic><topic>Brain Mapping - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - standards</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - standards</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Meta-Analysis as Topic</topic><topic>Middle Aged</topic><topic>Miscellaneous. Technology</topic><topic>multicenter</topic><topic>Nervous system</topic><topic>Observer Variation</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>reliability</topic><topic>Reproducibility of Results</topic><topic>segmentation</topic><topic>volumetric data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reig, Santiago</creatorcontrib><creatorcontrib>Sánchez-González, Javier</creatorcontrib><creatorcontrib>Arango, Celso</creatorcontrib><creatorcontrib>Castro, Josefina</creatorcontrib><creatorcontrib>González-Pinto, Ana</creatorcontrib><creatorcontrib>Ortuño, Felipe</creatorcontrib><creatorcontrib>Crespo-Facorro, Benedicto</creatorcontrib><creatorcontrib>Bargalló, Nuria</creatorcontrib><creatorcontrib>Desco, Manuel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reig, Santiago</au><au>Sánchez-González, Javier</au><au>Arango, Celso</au><au>Castro, Josefina</au><au>González-Pinto, Ana</au><au>Ortuño, Felipe</au><au>Crespo-Facorro, Benedicto</au><au>Bargalló, Nuria</au><au>Desco, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the increase in variability when combining volumetric data from different scanners</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2009-02</date><risdate>2009</risdate><volume>30</volume><issue>2</issue><spage>355</spage><epage>368</epage><pages>355-368</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>In multicenter MRI studies, pooling of volumetric data requires a prior evaluation of compatibility between the different machines used. We tested the compatibility of five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips Gyroscan) at five different sites by repeating the scans of five volunteers at each of the sites. Using a semiautomatic method based on the Talairach atlas, and SPM algorithms for tissue segmentation (multimodal T1 and T2, or T1‐only), we obtained volume measurements of the main brain lobes (frontal, parietal, occipital, temporal) and for each tissue type. Our results suggest that pooling of multisite data adds small error for whole brain measurements, intersite coefficient of variation (CV) ranging from 1.8 to 5.2%, respectively, for GM and CSF. However, in the occipital lobe, intersite CV can be as high as 11.7% for WM and 17.3% for CSF. Compared with the intersite, intrasite CV values were always much lower. Whenever possible, T1 and T2 tissue segmentation methods should be used because they yield more consistent volume measurements between sites than T1‐only, especially when some of the scans were obtained with different sequence parameters and pixel size from those of the other sites. Our study shows that highest compatibility among scanners would be obtained using equipments of the same manufacturer and also image acquisition parameters as similar as possible. After validation, data from a specific ROI or scanner showing values markedly different from the other sites might be excluded from the analysis. Hum Brain Mapp, 2009. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18064586</pmid><doi>10.1002/hbm.20511</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2009-02, Vol.30 (2), p.355-368 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871184 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central |
subjects | Adult Anthropometry - instrumentation Anthropometry - methods Biological and medical sciences brain Brain - anatomy & histology Brain Mapping - instrumentation Brain Mapping - methods Female Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Male Medical sciences Meta-Analysis as Topic Middle Aged Miscellaneous. Technology multicenter Nervous system Observer Variation Radiodiagnosis. Nmr imagery. Nmr spectrometry reliability Reproducibility of Results segmentation volumetric data |
title | Assessment of the increase in variability when combining volumetric data from different scanners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20increase%20in%20variability%20when%20combining%20volumetric%20data%20from%20different%20scanners&rft.jtitle=Human%20brain%20mapping&rft.au=Reig,%20Santiago&rft.date=2009-02&rft.volume=30&rft.issue=2&rft.spage=355&rft.epage=368&rft.pages=355-368&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.20511&rft_dat=%3Cproquest_pubme%3E66861190%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20374136&rft_id=info:pmid/18064586&rfr_iscdi=true |