The effect of model order selection in group PICA
Independent component analysis (ICA) of functional MRI data is sensitive to model order selection. There is a lack of knowledge about the effect of increasing model order on independent components' (ICs) characteristics of resting state networks (RSNs). Probabilistic group ICA (group PICA) of 5...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2010-08, Vol.31 (8), p.1207-1216 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1216 |
---|---|
container_issue | 8 |
container_start_page | 1207 |
container_title | Human brain mapping |
container_volume | 31 |
creator | Abou-Elseoud, Ahmed Starck, Tuomo Remes, Jukka Nikkinen, Juha Tervonen, Osmo Kiviniemi, Vesa |
description | Independent component analysis (ICA) of functional MRI data is sensitive to model order selection. There is a lack of knowledge about the effect of increasing model order on independent components' (ICs) characteristics of resting state networks (RSNs). Probabilistic group ICA (group PICA) of 55 healthy control subjects resting state data was repeated 100 times using ICASSO repeatability software and after clustering of components, centrotype components were used for further analysis. Visual signal sources (VSS), default mode network (DMN), primary somatosensory (S1), secondary somatosensory (S2), primary motor cortex (M1), striatum, and precuneus (preC) components were chosen as components of interest to be evaluated by varying group probabilistic independent component analysis (PICA) model order between 10 and 200. At model order 10, DMN and VSS components fuse several functionally separate sources that at higher model orders branch into multiple components. Both volume and mean z‐score of components of interest showed significant (P < 0.05) changes as a function of model order. In conclusion, model order has a significant effect on ICs characteristics. Our findings suggest that using model orders ≤20 provides a general picture of large scale brain networks. However, detection of some components (i.e., S1, S2, and striatum) requires higher model order estimation. Model orders 30–40 showed spatial overlapping of some IC sources. Model orders 70 ± 10 offer a more detailed evaluation of RSNs in a group PICA setting. Model orders > 100 showed a decrease in ICA repeatability, but added no significance to either volume or mean z‐score results. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/hbm.20929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>888100318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5809-aa01880cc1b1cbf30c4638caf280c509e4e09482c158d4f0383d5da14ac2fccc3</originalsourceid><addsrcrecordid>eNqFkU1vFDEMhiMEoqVw4A-guSDEYVp7Mh_JBQkq2iItX1KBY5T1ON3AzGRJdoH-e7LsdoED4mTLfvw68SvEQ4RjBKhOFvPxuAJd6VviEEF3JaCWtzd525S67vBA3EvpMwBiA3hXHFQArZQtHgq8XHDBzjGtiuCKMfQ8FCH2HIvEQ676MBV-Kq5iWC-Ld69On98Xd5wdEj_YxSPx4ezl5elFOXt7ntuzkhoFurQWUCkgwjnS3EmgupWKrKtysQHNNYOuVUXYqL52IJXsm95ibalyRCSPxLOt7nI9H7knnlbRDmYZ_WjjtQnWm787k1-Yq_DNtKpDlG0WeLITiOHrmtPKjD4RD4OdOKyTUUrl60lU_yU7WQOCqptMPt2SFENKkd3-PQhm44XJXphfXmT20Z8f2JM3x8_A4x1gE9nBRTuRT785CVJWaiN0suW--4Gv_73RXLx4fbO63E74tOIf-wkbv5i2k11jPr05N-8_zrRuZ505kz8BqBqtyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734010845</pqid></control><display><type>article</type><title>The effect of model order selection in group PICA</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Abou-Elseoud, Ahmed ; Starck, Tuomo ; Remes, Jukka ; Nikkinen, Juha ; Tervonen, Osmo ; Kiviniemi, Vesa</creator><creatorcontrib>Abou-Elseoud, Ahmed ; Starck, Tuomo ; Remes, Jukka ; Nikkinen, Juha ; Tervonen, Osmo ; Kiviniemi, Vesa</creatorcontrib><description>Independent component analysis (ICA) of functional MRI data is sensitive to model order selection. There is a lack of knowledge about the effect of increasing model order on independent components' (ICs) characteristics of resting state networks (RSNs). Probabilistic group ICA (group PICA) of 55 healthy control subjects resting state data was repeated 100 times using ICASSO repeatability software and after clustering of components, centrotype components were used for further analysis. Visual signal sources (VSS), default mode network (DMN), primary somatosensory (S1), secondary somatosensory (S2), primary motor cortex (M1), striatum, and precuneus (preC) components were chosen as components of interest to be evaluated by varying group probabilistic independent component analysis (PICA) model order between 10 and 200. At model order 10, DMN and VSS components fuse several functionally separate sources that at higher model orders branch into multiple components. Both volume and mean z‐score of components of interest showed significant (P < 0.05) changes as a function of model order. In conclusion, model order has a significant effect on ICs characteristics. Our findings suggest that using model orders ≤20 provides a general picture of large scale brain networks. However, detection of some components (i.e., S1, S2, and striatum) requires higher model order estimation. Model orders 30–40 showed spatial overlapping of some IC sources. Model orders 70 ± 10 offer a more detailed evaluation of RSNs in a group PICA setting. Model orders > 100 showed a decrease in ICA repeatability, but added no significance to either volume or mean z‐score results. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.20929</identifier><identifier>PMID: 20063361</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Biological and medical sciences ; Brain - blood supply ; Brain - physiology ; Brain Mapping ; Female ; FMRI ; Hand - innervation ; Humans ; ICA ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - methods ; Male ; Medical sciences ; model order ; Models, Statistical ; Movement - physiology ; Nervous system ; Oxygen - blood ; PICA ; Principal Component Analysis ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Radionuclide investigations ; Reproducibility of Results ; resting-state networks ; Young Adult</subject><ispartof>Human brain mapping, 2010-08, Vol.31 (8), p.1207-1216</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5809-aa01880cc1b1cbf30c4638caf280c509e4e09482c158d4f0383d5da14ac2fccc3</citedby><cites>FETCH-LOGICAL-c5809-aa01880cc1b1cbf30c4638caf280c509e4e09482c158d4f0383d5da14ac2fccc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871136/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871136/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23033289$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20063361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abou-Elseoud, Ahmed</creatorcontrib><creatorcontrib>Starck, Tuomo</creatorcontrib><creatorcontrib>Remes, Jukka</creatorcontrib><creatorcontrib>Nikkinen, Juha</creatorcontrib><creatorcontrib>Tervonen, Osmo</creatorcontrib><creatorcontrib>Kiviniemi, Vesa</creatorcontrib><title>The effect of model order selection in group PICA</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>Independent component analysis (ICA) of functional MRI data is sensitive to model order selection. There is a lack of knowledge about the effect of increasing model order on independent components' (ICs) characteristics of resting state networks (RSNs). Probabilistic group ICA (group PICA) of 55 healthy control subjects resting state data was repeated 100 times using ICASSO repeatability software and after clustering of components, centrotype components were used for further analysis. Visual signal sources (VSS), default mode network (DMN), primary somatosensory (S1), secondary somatosensory (S2), primary motor cortex (M1), striatum, and precuneus (preC) components were chosen as components of interest to be evaluated by varying group probabilistic independent component analysis (PICA) model order between 10 and 200. At model order 10, DMN and VSS components fuse several functionally separate sources that at higher model orders branch into multiple components. Both volume and mean z‐score of components of interest showed significant (P < 0.05) changes as a function of model order. In conclusion, model order has a significant effect on ICs characteristics. Our findings suggest that using model orders ≤20 provides a general picture of large scale brain networks. However, detection of some components (i.e., S1, S2, and striatum) requires higher model order estimation. Model orders 30–40 showed spatial overlapping of some IC sources. Model orders 70 ± 10 offer a more detailed evaluation of RSNs in a group PICA setting. Model orders > 100 showed a decrease in ICA repeatability, but added no significance to either volume or mean z‐score results. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Brain - blood supply</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Female</subject><subject>FMRI</subject><subject>Hand - innervation</subject><subject>Humans</subject><subject>ICA</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>model order</subject><subject>Models, Statistical</subject><subject>Movement - physiology</subject><subject>Nervous system</subject><subject>Oxygen - blood</subject><subject>PICA</subject><subject>Principal Component Analysis</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Radionuclide investigations</subject><subject>Reproducibility of Results</subject><subject>resting-state networks</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vFDEMhiMEoqVw4A-guSDEYVp7Mh_JBQkq2iItX1KBY5T1ON3AzGRJdoH-e7LsdoED4mTLfvw68SvEQ4RjBKhOFvPxuAJd6VviEEF3JaCWtzd525S67vBA3EvpMwBiA3hXHFQArZQtHgq8XHDBzjGtiuCKMfQ8FCH2HIvEQ676MBV-Kq5iWC-Ld69On98Xd5wdEj_YxSPx4ezl5elFOXt7ntuzkhoFurQWUCkgwjnS3EmgupWKrKtysQHNNYOuVUXYqL52IJXsm95ibalyRCSPxLOt7nI9H7knnlbRDmYZ_WjjtQnWm787k1-Yq_DNtKpDlG0WeLITiOHrmtPKjD4RD4OdOKyTUUrl60lU_yU7WQOCqptMPt2SFENKkd3-PQhm44XJXphfXmT20Z8f2JM3x8_A4x1gE9nBRTuRT785CVJWaiN0suW--4Gv_73RXLx4fbO63E74tOIf-wkbv5i2k11jPr05N-8_zrRuZ505kz8BqBqtyg</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Abou-Elseoud, Ahmed</creator><creator>Starck, Tuomo</creator><creator>Remes, Jukka</creator><creator>Nikkinen, Juha</creator><creator>Tervonen, Osmo</creator><creator>Kiviniemi, Vesa</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>201008</creationdate><title>The effect of model order selection in group PICA</title><author>Abou-Elseoud, Ahmed ; Starck, Tuomo ; Remes, Jukka ; Nikkinen, Juha ; Tervonen, Osmo ; Kiviniemi, Vesa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5809-aa01880cc1b1cbf30c4638caf280c509e4e09482c158d4f0383d5da14ac2fccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Brain - blood supply</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Female</topic><topic>FMRI</topic><topic>Hand - innervation</topic><topic>Humans</topic><topic>ICA</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>model order</topic><topic>Models, Statistical</topic><topic>Movement - physiology</topic><topic>Nervous system</topic><topic>Oxygen - blood</topic><topic>PICA</topic><topic>Principal Component Analysis</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Radionuclide investigations</topic><topic>Reproducibility of Results</topic><topic>resting-state networks</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abou-Elseoud, Ahmed</creatorcontrib><creatorcontrib>Starck, Tuomo</creatorcontrib><creatorcontrib>Remes, Jukka</creatorcontrib><creatorcontrib>Nikkinen, Juha</creatorcontrib><creatorcontrib>Tervonen, Osmo</creatorcontrib><creatorcontrib>Kiviniemi, Vesa</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abou-Elseoud, Ahmed</au><au>Starck, Tuomo</au><au>Remes, Jukka</au><au>Nikkinen, Juha</au><au>Tervonen, Osmo</au><au>Kiviniemi, Vesa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of model order selection in group PICA</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2010-08</date><risdate>2010</risdate><volume>31</volume><issue>8</issue><spage>1207</spage><epage>1216</epage><pages>1207-1216</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>Independent component analysis (ICA) of functional MRI data is sensitive to model order selection. There is a lack of knowledge about the effect of increasing model order on independent components' (ICs) characteristics of resting state networks (RSNs). Probabilistic group ICA (group PICA) of 55 healthy control subjects resting state data was repeated 100 times using ICASSO repeatability software and after clustering of components, centrotype components were used for further analysis. Visual signal sources (VSS), default mode network (DMN), primary somatosensory (S1), secondary somatosensory (S2), primary motor cortex (M1), striatum, and precuneus (preC) components were chosen as components of interest to be evaluated by varying group probabilistic independent component analysis (PICA) model order between 10 and 200. At model order 10, DMN and VSS components fuse several functionally separate sources that at higher model orders branch into multiple components. Both volume and mean z‐score of components of interest showed significant (P < 0.05) changes as a function of model order. In conclusion, model order has a significant effect on ICs characteristics. Our findings suggest that using model orders ≤20 provides a general picture of large scale brain networks. However, detection of some components (i.e., S1, S2, and striatum) requires higher model order estimation. Model orders 30–40 showed spatial overlapping of some IC sources. Model orders 70 ± 10 offer a more detailed evaluation of RSNs in a group PICA setting. Model orders > 100 showed a decrease in ICA repeatability, but added no significance to either volume or mean z‐score results. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20063361</pmid><doi>10.1002/hbm.20929</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2010-08, Vol.31 (8), p.1207-1216 |
issn | 1065-9471 1097-0193 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871136 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adult Biological and medical sciences Brain - blood supply Brain - physiology Brain Mapping Female FMRI Hand - innervation Humans ICA Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Male Medical sciences model order Models, Statistical Movement - physiology Nervous system Oxygen - blood PICA Principal Component Analysis Radiodiagnosis. Nmr imagery. Nmr spectrometry Radionuclide investigations Reproducibility of Results resting-state networks Young Adult |
title | The effect of model order selection in group PICA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20model%20order%20selection%20in%20group%20PICA&rft.jtitle=Human%20brain%20mapping&rft.au=Abou-Elseoud,%20Ahmed&rft.date=2010-08&rft.volume=31&rft.issue=8&rft.spage=1207&rft.epage=1216&rft.pages=1207-1216&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.20929&rft_dat=%3Cproquest_pubme%3E888100318%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734010845&rft_id=info:pmid/20063361&rfr_iscdi=true |