Functional connectivity estimation in fMRI data: Influence of preprocessing and time course selection
A number of techniques have been used to provide functional connectivity estimates for a given fMRI data set. In this study we compared two methods: a ‘rest‐like’ method where the functional connectivity was estimated for the whitened residuals after regressing out the task‐induced effects, and a wi...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2008-09, Vol.29 (9), p.1040-1052 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1052 |
---|---|
container_issue | 9 |
container_start_page | 1040 |
container_title | Human brain mapping |
container_volume | 29 |
creator | Gavrilescu, Maria Stuart, Geoffrey W. Rossell, Susan Henshall, Katherine McKay, Colette Sergejew, Alex A. Copolov, David Egan, Gary F. |
description | A number of techniques have been used to provide functional connectivity estimates for a given fMRI data set. In this study we compared two methods: a ‘rest‐like’ method where the functional connectivity was estimated for the whitened residuals after regressing out the task‐induced effects, and a within‐condition method where the functional connectivity was estimated separately for each experimental condition. In both cases four pre‐processing strategies were used: 1) time courses extracted from standard pre‐processed data (standard); 2) adjusted time courses extracted using the volume of interest routines in SPM2 from standard pre‐processed data (spm); 3) time courses extracted from ICA denoised data (standard denoised); and 4) adjusted time courses extracted from ICA denoised data (spm denoised). The temporal correlation between time series extracted from two cortical regions were statistically compared with the temporal correlation between a time series extracted from a cortical region and a time series extracted form a region placed in CSF. Since the later correlation is due to physiological noise and other artifacts, we used this comparison to investigate whether rest‐like and task modulated connectivity could be estimated from the same data set. The pre‐processing strategy had a significant effect on the connectivity estimates with the standard time courses providing larger connectivity values than the spm time courses for both estimation methods. The CSF comparison indicated that for our data set only rest‐like connectivity could be estimated. The rest‐like connectivity values were similar with connectivity estimated from resting state data. Hum Brain Mapp 2008. © 2007 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/hbm.20446 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69446660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4816-cadde303e8c21d9e6169d37ea8c11039247cfb3d565d2cd5b65d6ea33d07b6d3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxSMEoqXlwBdAvoDEIa0nTuyEQyVYsX-kttCqUo-WY09aQ9Ze7KSw3x5vd1ngwGlszW_es-dl2SugJ0BpcXrfLk8KWpb8SXYItBE5hYY93Zx5lTelgIPsRYxfKQWoKDzPDkA0rIIaDjOcjk4P1jvVE-2dw3R5sMOaYBzsUm06xDrSXVwviFGDek8WrutHdBqJ78gq4Cp4jTFad0eUMyRNYVIaQ0QSscdH8ePsWaf6iC939Si7mX66mczz88-zxeTDea7LGniulTHIKMNaF2Aa5MAbwwSqWgNQ1hSl0F3LTMUrU2hTtalyVIwZKlpu2FF2tpVdje0SjUY3BNXLVUg_CWvplZX_dpy9l3f-QfJaAK15Eni7Ewj--5hWIJc2aux75dCPUfImLZlzmsB3W1AHH2PAbm8CVG4ykSkT-ZhJYl___ao_5C6EBLzZASpq1XdBOW3jnitoMqygSNzplvthe1z_31HOP178ts63EzYO-HM_ocI3yQUTlby9nMmryexWzMup_MJ-AdvqtOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69446660</pqid></control><display><type>article</type><title>Functional connectivity estimation in fMRI data: Influence of preprocessing and time course selection</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gavrilescu, Maria ; Stuart, Geoffrey W. ; Rossell, Susan ; Henshall, Katherine ; McKay, Colette ; Sergejew, Alex A. ; Copolov, David ; Egan, Gary F.</creator><creatorcontrib>Gavrilescu, Maria ; Stuart, Geoffrey W. ; Rossell, Susan ; Henshall, Katherine ; McKay, Colette ; Sergejew, Alex A. ; Copolov, David ; Egan, Gary F.</creatorcontrib><description>A number of techniques have been used to provide functional connectivity estimates for a given fMRI data set. In this study we compared two methods: a ‘rest‐like’ method where the functional connectivity was estimated for the whitened residuals after regressing out the task‐induced effects, and a within‐condition method where the functional connectivity was estimated separately for each experimental condition. In both cases four pre‐processing strategies were used: 1) time courses extracted from standard pre‐processed data (standard); 2) adjusted time courses extracted using the volume of interest routines in SPM2 from standard pre‐processed data (spm); 3) time courses extracted from ICA denoised data (standard denoised); and 4) adjusted time courses extracted from ICA denoised data (spm denoised). The temporal correlation between time series extracted from two cortical regions were statistically compared with the temporal correlation between a time series extracted from a cortical region and a time series extracted form a region placed in CSF. Since the later correlation is due to physiological noise and other artifacts, we used this comparison to investigate whether rest‐like and task modulated connectivity could be estimated from the same data set. The pre‐processing strategy had a significant effect on the connectivity estimates with the standard time courses providing larger connectivity values than the spm time courses for both estimation methods. The CSF comparison indicated that for our data set only rest‐like connectivity could be estimated. The rest‐like connectivity values were similar with connectivity estimated from resting state data. Hum Brain Mapp 2008. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.20446</identifier><identifier>PMID: 17935181</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Biological and medical sciences ; Brain Mapping - methods ; Electrodiagnosis. Electric activity recording ; Female ; functional connectivity ; Humans ; ICA denoising ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - methods ; Male ; Medical sciences ; Nerve Net - physiology ; Nervous system ; Photic Stimulation - methods ; Psychomotor Performance - physiology ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Reaction Time - physiology ; Statistics as Topic - methods ; time course selection</subject><ispartof>Human brain mapping, 2008-09, Vol.29 (9), p.1040-1052</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>2008 INIST-CNRS</rights><rights>(c) 2007 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4816-cadde303e8c21d9e6169d37ea8c11039247cfb3d565d2cd5b65d6ea33d07b6d3</citedby><cites>FETCH-LOGICAL-c4816-cadde303e8c21d9e6169d37ea8c11039247cfb3d565d2cd5b65d6ea33d07b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871086/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871086/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20603512$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17935181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gavrilescu, Maria</creatorcontrib><creatorcontrib>Stuart, Geoffrey W.</creatorcontrib><creatorcontrib>Rossell, Susan</creatorcontrib><creatorcontrib>Henshall, Katherine</creatorcontrib><creatorcontrib>McKay, Colette</creatorcontrib><creatorcontrib>Sergejew, Alex A.</creatorcontrib><creatorcontrib>Copolov, David</creatorcontrib><creatorcontrib>Egan, Gary F.</creatorcontrib><title>Functional connectivity estimation in fMRI data: Influence of preprocessing and time course selection</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>A number of techniques have been used to provide functional connectivity estimates for a given fMRI data set. In this study we compared two methods: a ‘rest‐like’ method where the functional connectivity was estimated for the whitened residuals after regressing out the task‐induced effects, and a within‐condition method where the functional connectivity was estimated separately for each experimental condition. In both cases four pre‐processing strategies were used: 1) time courses extracted from standard pre‐processed data (standard); 2) adjusted time courses extracted using the volume of interest routines in SPM2 from standard pre‐processed data (spm); 3) time courses extracted from ICA denoised data (standard denoised); and 4) adjusted time courses extracted from ICA denoised data (spm denoised). The temporal correlation between time series extracted from two cortical regions were statistically compared with the temporal correlation between a time series extracted from a cortical region and a time series extracted form a region placed in CSF. Since the later correlation is due to physiological noise and other artifacts, we used this comparison to investigate whether rest‐like and task modulated connectivity could be estimated from the same data set. The pre‐processing strategy had a significant effect on the connectivity estimates with the standard time courses providing larger connectivity values than the spm time courses for both estimation methods. The CSF comparison indicated that for our data set only rest‐like connectivity could be estimated. The rest‐like connectivity values were similar with connectivity estimated from resting state data. Hum Brain Mapp 2008. © 2007 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Brain Mapping - methods</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Female</subject><subject>functional connectivity</subject><subject>Humans</subject><subject>ICA denoising</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Photic Stimulation - methods</subject><subject>Psychomotor Performance - physiology</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Reaction Time - physiology</subject><subject>Statistics as Topic - methods</subject><subject>time course selection</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxSMEoqXlwBdAvoDEIa0nTuyEQyVYsX-kttCqUo-WY09aQ9Ze7KSw3x5vd1ngwGlszW_es-dl2SugJ0BpcXrfLk8KWpb8SXYItBE5hYY93Zx5lTelgIPsRYxfKQWoKDzPDkA0rIIaDjOcjk4P1jvVE-2dw3R5sMOaYBzsUm06xDrSXVwviFGDek8WrutHdBqJ78gq4Cp4jTFad0eUMyRNYVIaQ0QSscdH8ePsWaf6iC939Si7mX66mczz88-zxeTDea7LGniulTHIKMNaF2Aa5MAbwwSqWgNQ1hSl0F3LTMUrU2hTtalyVIwZKlpu2FF2tpVdje0SjUY3BNXLVUg_CWvplZX_dpy9l3f-QfJaAK15Eni7Ewj--5hWIJc2aux75dCPUfImLZlzmsB3W1AHH2PAbm8CVG4ykSkT-ZhJYl___ao_5C6EBLzZASpq1XdBOW3jnitoMqygSNzplvthe1z_31HOP178ts63EzYO-HM_ocI3yQUTlby9nMmryexWzMup_MJ-AdvqtOQ</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Gavrilescu, Maria</creator><creator>Stuart, Geoffrey W.</creator><creator>Rossell, Susan</creator><creator>Henshall, Katherine</creator><creator>McKay, Colette</creator><creator>Sergejew, Alex A.</creator><creator>Copolov, David</creator><creator>Egan, Gary F.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200809</creationdate><title>Functional connectivity estimation in fMRI data: Influence of preprocessing and time course selection</title><author>Gavrilescu, Maria ; Stuart, Geoffrey W. ; Rossell, Susan ; Henshall, Katherine ; McKay, Colette ; Sergejew, Alex A. ; Copolov, David ; Egan, Gary F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4816-cadde303e8c21d9e6169d37ea8c11039247cfb3d565d2cd5b65d6ea33d07b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Brain Mapping - methods</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Female</topic><topic>functional connectivity</topic><topic>Humans</topic><topic>ICA denoising</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Photic Stimulation - methods</topic><topic>Psychomotor Performance - physiology</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Reaction Time - physiology</topic><topic>Statistics as Topic - methods</topic><topic>time course selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavrilescu, Maria</creatorcontrib><creatorcontrib>Stuart, Geoffrey W.</creatorcontrib><creatorcontrib>Rossell, Susan</creatorcontrib><creatorcontrib>Henshall, Katherine</creatorcontrib><creatorcontrib>McKay, Colette</creatorcontrib><creatorcontrib>Sergejew, Alex A.</creatorcontrib><creatorcontrib>Copolov, David</creatorcontrib><creatorcontrib>Egan, Gary F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavrilescu, Maria</au><au>Stuart, Geoffrey W.</au><au>Rossell, Susan</au><au>Henshall, Katherine</au><au>McKay, Colette</au><au>Sergejew, Alex A.</au><au>Copolov, David</au><au>Egan, Gary F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional connectivity estimation in fMRI data: Influence of preprocessing and time course selection</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2008-09</date><risdate>2008</risdate><volume>29</volume><issue>9</issue><spage>1040</spage><epage>1052</epage><pages>1040-1052</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>A number of techniques have been used to provide functional connectivity estimates for a given fMRI data set. In this study we compared two methods: a ‘rest‐like’ method where the functional connectivity was estimated for the whitened residuals after regressing out the task‐induced effects, and a within‐condition method where the functional connectivity was estimated separately for each experimental condition. In both cases four pre‐processing strategies were used: 1) time courses extracted from standard pre‐processed data (standard); 2) adjusted time courses extracted using the volume of interest routines in SPM2 from standard pre‐processed data (spm); 3) time courses extracted from ICA denoised data (standard denoised); and 4) adjusted time courses extracted from ICA denoised data (spm denoised). The temporal correlation between time series extracted from two cortical regions were statistically compared with the temporal correlation between a time series extracted from a cortical region and a time series extracted form a region placed in CSF. Since the later correlation is due to physiological noise and other artifacts, we used this comparison to investigate whether rest‐like and task modulated connectivity could be estimated from the same data set. The pre‐processing strategy had a significant effect on the connectivity estimates with the standard time courses providing larger connectivity values than the spm time courses for both estimation methods. The CSF comparison indicated that for our data set only rest‐like connectivity could be estimated. The rest‐like connectivity values were similar with connectivity estimated from resting state data. Hum Brain Mapp 2008. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17935181</pmid><doi>10.1002/hbm.20446</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2008-09, Vol.29 (9), p.1040-1052 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871086 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Biological and medical sciences Brain Mapping - methods Electrodiagnosis. Electric activity recording Female functional connectivity Humans ICA denoising Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Male Medical sciences Nerve Net - physiology Nervous system Photic Stimulation - methods Psychomotor Performance - physiology Radiodiagnosis. Nmr imagery. Nmr spectrometry Reaction Time - physiology Statistics as Topic - methods time course selection |
title | Functional connectivity estimation in fMRI data: Influence of preprocessing and time course selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20connectivity%20estimation%20in%20fMRI%20data:%20Influence%20of%20preprocessing%20and%20time%20course%20selection&rft.jtitle=Human%20brain%20mapping&rft.au=Gavrilescu,%20Maria&rft.date=2008-09&rft.volume=29&rft.issue=9&rft.spage=1040&rft.epage=1052&rft.pages=1040-1052&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.20446&rft_dat=%3Cproquest_pubme%3E69446660%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69446660&rft_id=info:pmid/17935181&rfr_iscdi=true |